85
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Preparation of mixed spinel catalyst support (CaxMg1-xAl2O4) reinforced by calcium oxide toward in the biodiesel production from vegetable oil

, , & ORCID Icon
Pages 745-756 | Received 07 Feb 2023, Accepted 11 May 2023, Published online: 15 May 2023

References

  • Abukhadra, M. R., A. S. Mohamed, A. M. El-Sherbeeny, A. Tawhid Ahmed Soliman, and E. Abd Elatty. 2020. Sonication induced transesterification of castor oil into biodiesel in the presence of MgO/CaO nanorods as a novel basic catalyst: Characterization and optimization. Chemical Engineering and Processing-Process Intensification 154:108024. doi:10.1016/j.cep.2020.108024.
  • Alaei, S., M. Haghighi, B. Rahmanivahid, R. Shokrani, and H. Naghavi. 2020. Conventional vs. hybrid methods for dispersion of MgO over magnetic Mg–Fe mixed oxides nanocatalyst in biofuel production from vegetable oil. Renewable Energy 154:1188–203. doi:10.1016/j.renene.2020.03.039.
  • Alaei, S., M. Haghighi, J. Toghiani, and B. Rahmani Vahid. 2018. Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance. Industrial Crops and Products 117:322–32. doi:10.1016/j.indcrop.2018.03.015.
  • Catarino, M., S. Martins, A. Paula Soares Dias, M. Francisco Costa Pereira, and J. Gomes. 2019. Calcium diglyceroxide as a catalyst for biodiesel production. Journal of Environmental Chemical Engineering 7 (3):103099. doi:10.1016/j.jece.2019.103099.
  • Dias, A. P. S., J. Puna, J. Gomes, M. Joana Neiva Correia, and J. Bordado. 2016. Biodiesel production over lime. Catalytic contributions of bulk phases and surface Ca species formed during reaction. Renewable Energy 99:622–30. doi:10.1016/j.renene.2016.07.033.
  • Gabriel, R., S. H. V. de Carvalho, J. L. da Silva Duarte, L. M. T. M. Oliveira, D. A. Giannakoudakis, K. S. Triantafyllidis, J. I. Soletti, and L. Meili. 2022. Mixed metal oxides derived from layered double hydroxide as catalysts for biodiesel production. Appl Catal A, General 630:118470. doi:10.1016/j.apcata.2021.118470.
  • Gonçalves, A., E. K. L. M. Matheus, J. Roberto Zamian, G. N. da Rocha Filho, and L. R. V. da Conceição. 2021. Statistical optimization of biodiesel production from waste cooking oil using magnetic acid heterogeneous catalyst MoO3/SrFe2O4. Fuel 304:121463. doi:10.1016/j.fuel.2021.121463.
  • Halim, S. A., N. Afiqah Mohd, and N. Ashraf Razali. 2022. A comparative assessment of biofuel products from rice husk and oil palm empty fruit bunch obtained from conventional and microwave pyrolysis. Journal of the Taiwan Institute of Chemical Engineers 134:104305. doi:10.1016/j.jtice.2022.104305.
  • Hashemzehi, M., V. Pirouzfar, H. Nayebzadeh, and S. Chia‐hung. 2022. Modelling and optimization of main independent parameters for biodiesel production over a Cu0. 4Zn0. 6Al2O4 catalyst using an RSM method. Journal of Chemical Technology & Biotechnology 97 (1):111–19. doi:10.1002/jctb.6916.
  • Hedin, N., and Z. Bacsik. 2019. Perspectives on the adsorption of CO2 on amine-modified silica studied by infrared spectroscopy. Current Opinion in Green and Sustainable Chemistry 16:13–19. doi:10.1016/j.cogsc.2018.11.010.
  • Heydari, H., H. Nayebzadeh, and M. Shahraki. 2018. Effect of fuel molecules on properties and activity of KOH/calcium aluminate nanocatalyst for biodiesel production. International Journal of Environmental Science & Technology 15 (8):1719–30. doi:10.1007/s13762-017-1501-1.
  • Janani, B., S. S. Al-Amri, M. K. Okla, A. Mohebaldin, W. Soufan, B. Almunqedhi, M. A. Abdel-Maksoud, H. AbdElgawad, A. M. Thomas, L. L. Raju, et al. 2022. High performing p-n system of CaFe2O4 coupled ZnO for synergetic degradation of Rhodamine B with white-light photocatalysis and bactericidal action. Journal of the Taiwan Institute of Chemical Engineers 133:104271. doi:10.1016/j.jtice.2022.104271.
  • Jayakumar, M., N. Karmegam, M. Paulraj Gundupalli, K. Bizuneh Gebeyehu, B. Tessema Asfaw, S. Woong Chang, B. Ravindran, and M. Kumar Awasthi. 2021. Heterogeneous base catalysts: Synthesis and application for biodiesel production – a review. Bioresource Technology 331:125054. doi:10.1016/j.biortech.2021.125054.
  • Kesserwan, F., M. N. Ahmad, M. Khalil, and H. El-Rassy. 2020. Hybrid CaO/Al2O3 aerogel as heterogeneous catalyst for biodiesel production. Chemical Engineering Journal 385:123834. doi:10.1016/j.cej.2019.123834.
  • Kouzu, M., T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, and J. Hidaka. 2008. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87 (12):2798–806. doi:10.1016/j.fuel.2007.10.019.
  • Le, J., Q. Fan, L. Perez-Martinez, A. Cuesta, and J. Cheng. 2018. Theoretical insight into the vibrational spectra of metal–water interfaces from density functional theory based molecular dynamics. Physical Chemistry Chemical Physics 20 (17):11554–58. doi:10.1039/C8CP00615F.
  • Li, H., H. Chu, M. Xiaoling, G. Wang, F. Liu, M. Guo, L. Wangpeng, S. Zhou, and Y. Mingzhi. 2021. Efficient heterogeneous acid synthesis and stability enhancement of UiO-66 impregnated with ammonium sulfate for biodiesel production. Chemical Engineering Journal 408:127277. doi:10.1016/j.cej.2020.127277.
  • Li, H., Y. Wang, M. Xiaoling, W. Zhongjie, P. Cui, L. Wanpeng, F. Liu, H. Chu, and Y. Wang. 2020. A novel magnetic CaO-based catalyst synthesis and characterization: Enhancing the catalytic activity and stability of CaO for biodiesel production. Chemical Engineering Journal 391:123549. doi:10.1016/j.cej.2019.123549.
  • Li, X., X. Haifen, L. Wang, L. Zhang, X. Cao, and Y. Guo. 2018. Spinel NiFe2O4 nanoparticles decorated BiOBr nanosheets for improving the photocatalytic degradation of organic dye pollutants. Journal of the Taiwan Institute of Chemical Engineers 85:257–64. doi:10.1016/j.jtice.2018.01.043.
  • Long, F., W. Liu, X. Jiang, Q. Zhai, X. Cao, J. Jiang, and X. Junming. 2021. State-of-the-art technologies for biofuel production from triglycerides: A review. Renewable & Sustainable Energy Reviews 148:111269. doi:10.1016/j.rser.2021.111269.
  • Ma, D., S. Jia, Z. Hu, X. Wang, L. Li, H. Tan, and Z. Ur Rahman. 2022. Experimental investigation of water washing effect on high-chlorine coal properties. Fuel 319:123838. doi:10.1016/j.fuel.2022.123838.
  • Mathew, G. M., D. Raina, V. Narisetty, V. Kumar, S. Saran, A. Pugazhendi, R. Sindhu, A. Pandey, and P. Binod. 2021. Recent advances in biodiesel production: Challenges and solutions. The Science of the Total Environment 794:148751. doi:10.1016/j.scitotenv.2021.148751.
  • Mierczynski, P., K. A. Chalupka, W. Maniukiewicz, J. Kubicki, M. I. Szynkowska, and T. P. Maniecki. 2015. SrAl2O4 spinel phase as active phase of transesterification of rapeseed oil. Appl Catal B, Environmental 164:176–83. doi:10.1016/j.apcatb.2014.09.003.
  • Nayebzadeh, H., N. Saghatoleslami, M. Haghighi, and M. Tabasizadeh. 2019. Catalytic activity of KOH–CaO–Al2O3 nanocomposites in Biodiesel production: Impact of preparation method. International Journal of Self-Propagating High-Temperature Synthesis 28 (1):18–27. doi:10.3103/S1061386219010102.
  • Nayebzadeh, H., M. Haghighi, N. Saghatoleslami, S. Alaei, and S. Yousefi. 2019. Texture/Phase evolution during plasma treatment of microwave-combustion synthesized KOH/Ca12Al14O33-C nanocatalyst for reusability enhancement in conversion of canola oil to biodiesel. Renewable Energy 139:28–39. doi:10.1016/j.renene.2019.01.122.
  • Nayebzadeh, H., M. Haghighi, N. Saghatoleslami, and M. Tabasizadeh. 2020. Influence of fuel to Oxidizer ratio on microwave-assisted combustion preparation of Nanostructured KOH/Ca12Al14O33 catalyst used in efficient Biodiesel production. Frontiers in Energy Research 8:106. doi:10.3389/fenrg.2020.00106.
  • Nayebzadeh, H., M. Haghighi, N. Saghatoleslami, M. Tabasizadeh, and S. Yousefi. 2018. Fabrication of carbonated alumina doped by calcium oxide via microwave combustion method used as nanocatalyst in biodiesel production: Influence of carbon source type. Energy Conversion & Management 171:566–75. doi:10.1016/j.enconman.2018.05.081.
  • Nayebzadeh, H., and M. Hojjat. 2020. Fabrication of SO42−/MO–Al2O3–ZrO2 (M= Ca, Mg, Sr, Ba) as Solid Acid–Base Nanocatalyst used in Trans/Esterification Reaction. Waste and Biomass Valorization 11 (5):2027–37. doi:10.1007/s12649-018-0526-0.
  • Nayebzadeh, H., F. Naderi, and B. Rahmanivahid. 2020. Assessment the synthesis conditions of separable magnetic spinel nanocatalyst for green fuel production: Optimization of transesterification reaction conditions using response surface methodology. Fuel 271:117595. doi:10.1016/j.fuel.2020.117595.
  • Nayebzadeh, H., N. Saghatoleslami, and M. Tabasizadeh. 2016. Optimization of the activity of KOH/calcium aluminate nanocatalyst for biodiesel production using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers 68:379–86. doi:10.1016/j.jtice.2016.09.041.
  • Praikaew, W., W. Kiatkittipong, F. Aiouache, V. Najdanovic‐visak, M. Termtanun, J. Wei Lim, S. Shiung Lam, K. Kiatkittipong, N. Laosiripojana, S. Boonyasuwat, et al. 2022. Mechanism of CaO catalyst deactivation with unconventional monitoring method for glycerol carbonate production via transesterification of glycerol with dimethyl carbonate. International Journal of Energy Research 46 (2):1646–58. doi:10.1002/er.7281.
  • Purwanto, P., L. Buchori, and I. Istadi. 2020. Reaction rate law model and reaction mechanism covering effect of plasma role on the transesterification of triglyceride and methanol to biodiesel over a continuous flow hybrid catalytic-plasma reactor. Heliyon 6 (10):e05164. doi:10.1016/j.heliyon.2020.e05164.
  • Putra, M. D., C. Irawan, Y. Ristianingsih, I. Fatyasari Nata, and I. F. Nata. 2018. A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study. Journal of Cleaner Production 195:1249–58. doi:10.1016/j.jclepro.2018.06.010.
  • Sirisomboonchai, S., M. Abuduwayiti, G. Guan, C. Samart, S. Abliz, X. Hao, K. Kusakabe, and A. Abudula. 2015. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Conversion & Management 95:242–47. doi:10.1016/j.enconman.2015.02.044.
  • Song, Z., B. Subramaniam, and R. V. Chaudhari. 2018. Kinetic study of CaO-catalyzed transesterification of cyclic carbonates with methanol. Industrial & Engineering Chemistry Research 57 (44):14977–87. doi:10.1021/acs.iecr.8b03837.
  • Tang, C., Z. Zhai, L. Xinli, L. Sun, and W. Bai. 2016. Sustainable production of acetaldehyde from lactic acid over the magnesium aluminate spinel. Journal of the Taiwan Institute of Chemical Engineers 58:97–106. doi:10.1016/j.jtice.2015.06.014.
  • Vahid, B. R., and M. Haghighi. 2016. Urea-nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst used in biodiesel production from sunflower oil: Influence of fuel ratio on catalytic properties and performance. Energy Conversion & Management 126:362–72. doi:10.1016/j.enconman.2016.07.050.
  • Vahid, B. R., and M. Haghighi. 2017. Biodiesel production from sunflower oil over MgO/MgAl2O4 nanocatalyst: Effect of fuel type on catalyst nanostructure and performance. Energy Conversion & Management 134:290–300. doi:10.1016/j.enconman.2016.12.048.
  • Vahid, B. R., M. Haghighi, S. Alaei, and J. Toghiani. 2017. Reusability enhancement of combustion synthesized MgO/MgAl2O4 nanocatalyst in biodiesel production by glow discharge plasma treatment. Energy Conversion & Management 143:23–32. doi:10.1016/j.enconman.2017.03.075.
  • Vahid, B. R., M. Haghighi, J. Toghiani, and S. Alaei. 2018. Hybrid-coprecipitation vs. combustion synthesis of Mg-Al spinel based nanocatalyst for efficient biodiesel production. Energy Conversion & Management 160:220–29. doi:10.1016/j.enconman.2018.01.030.
  • Widiarti, N., Y. Lailun Ni’mah, H. Bahruji, and D. Prasetyoko. 2019. Development of CaO from natural calcite as a heterogeneous base catalyst in the formation of biodiesel. Journal of Renewable Materials 7 (10):915–40. doi:10.32604/jrm.2019.07183.
  • Xue, B.J., J. Luo, F. Zhang, and Z. Fang. 2014. Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4–Ca2Fe2O5-based catalyst. Energy 68:584–91. doi:10.1016/j.energy.2014.02.082.
  • Yousefi, S., M. Haghighi, and B. Rahmani Vahid. 2018. Facile and efficient microwave combustion fabrication of Mg-spinel as support for MgO nanocatalyst used in biodiesel production from sunflower oil: Fuel type approach. Chemical Engineering Research & Design 138:506–18. doi:10.1016/j.cherd.2018.09.013.
  • Yousefi, S., M. Haghighi, and B. Rahmani Vahid. 2019. Role of glycine/nitrates ratio on structural and texture evolution of MgO-based nanocatalyst fabricated by hybrid microwave-impregnation method for biofuel production. Energy Conversion & Management 182:251–61. doi:10.1016/j.enconman.2018.12.067.
  • Zabeti, M., W. Mohd Ashri Wan Daud, and M. Kheireddine Aroua. 2010. Biodiesel production using alumina-supported calcium oxide: An optimization study. Fuel Processing Technology 91 (2):243–48. doi:10.1016/j.fuproc.2009.10.004.
  • Zhang, F., and Z. Fang. 2012. Hydrolysis of cellulose to glucose at the low temperature of 423K with CaFe2O4-based solid catalyst. Bioresource Technology 124:440–45. doi:10.1016/j.biortech.2012.08.025.
  • Zhang, L., Y. Li, H. Guo, H. Zhang, N. Zhang, T. Hayat, and Y. Sun. 2019. Decontamination of U (VI) on graphene oxide/Al2O3 composites investigated by XRD, FT-IR and XPS techniques. Environmental Pollution 248:332–38. doi:10.1016/j.envpol.2019.01.126.
  • Zhang, Y., L. Duan, and H. Esmaeili. 2022. A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass & bioenergy 158:106356. doi:10.1016/j.biombioe.2022.106356.
  • Zul, N. A., S. Ganesan, T. Sherwyn Hamidon, W.D. Oh, and M. Hazwan Hussin. 2021. A review on the utilization of calcium oxide as a base catalyst in biodiesel production. Journal of Environmental Chemical Engineering 9 (4):105741. doi:10.1016/j.jece.2021.105741.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.