144
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation of the residual stress and failure probability of solid oxide fuel cells with nonplanar cathode–electrolyte interfaces

, , , & ORCID Icon
Pages 757-770 | Received 16 Feb 2023, Accepted 17 May 2023, Published online: 27 May 2023

References

  • Abd Aziz A. J. N. A. Baharuddin M. R. Somalu and A. Muchtar. 2020. Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications. Ceramics International 46(15):23314–25. doi:10.1016/j.ceramint.2020.06.176.
  • Biswas S. T. Nithyanantham N. T. Saraswathi and S. Bandopadhyay. 2009. Evaluation of elastic properties of reduced NiO-8YSZ anode-supported bi-layer SOFC structures at elevated temperatures in ambient air and reducing environments. Journal of Materials Science 44 (3):778–85. doi:10.1007/s10853-008-3141-9.
  • Catalano M. A. Taurino J. Zhu P. A. Crozier S. Dal Zilio M. Amati L. Gregoratti B. Bozzini and C. Mele. 2018. Dy- and Tb-doped CeO2-Ni cermets for solid oxide fuel cell anodes: Electrochemical fabrication structural characterization and electrocatalytic performance. Journal of Solid State Electrochemistry 22 (12):3761–73. doi:10.1007/s10008-018-4064-2.
  • Chen S. D. Gu Y. Zheng H. Chen and L. Guo. 2020. Enhanced performance of NiO–3YSZ planar anode-supported SOFC with an anode functional layer. Journal of Materials Science 55 (1):88–98. doi:10.1007/s10853-019-04007-4.
  • Chen L. H. Luan Y.-L. He and W.-Q. Tao. 2012. Effects of roughness of gas diffusion layer surface on liquid water transport in micro gas channels of a proton exchange membrane fuel cell. Numerical Heat Transfer Part A: Applications. Numerical Heat Transfer Part A: Applications 62 (4):295–318. doi:10.1080/10407782.2012.670586.
  • Cui T., G. Xiao, H. Yan, Y. Zhang and J. Q Wang. 2022. Numerical simulation and analysis of the thermal stresses of a planar solid oxide electrolysis cell. International Journal of Green Energy 20 (4): 432–444.
  • Dayaghi A. M. K. J. Kim S. J. Kim S. Kim H. Bae and G. M. Choi. 2017. Thermal cycling and electrochemical characteristics of solid oxide fuel cell supported on stainless steel with a new 3-phase composite anode. Journal of Power Sources 354:74–84. doi:10.1016/j.jpowsour.2017.04.022.
  • Delette G. J. Laurencin F. Usseglio-Viretta J. Villanova P. Bleuet E. Lay-Grindler and T. Le Bihan. 2013. Thermo-elastic properties of SOFC/SOEC electrode materials determined from three-dimensional microstructural reconstructions. International Journal of Hydrogen Energy 38 (28):12379–91. doi:10.1016/j.ijhydene.2013.07.027.
  • Dey T. D. Singdeo M. Bose R. N. Basu and P. C. Ghosh. 2013. Study of contact resistance at the electrode–interconnect interfaces in planar type Solid Oxide Fuel Cells. Journal of Power Sources 233:290–98. doi:10.1016/j.jpowsour.2013.01.111.
  • Dunsmore L. A. Uddin H. Zhang G. Wu and S. Litster. 2021. Non-planar platinum group metal-free fuel cell cathodes for enhanced oxygen transport and water rejection. Journal of Power Sources 506:230188. doi:10.1016/j.jpowsour.2021.230188.
  • Fang X. and Z. Lin. 2018. Numerical study on the mechanical stress and mechanical failure of planar solid oxide fuel cell. Applied Energy 229:63–68. doi:10.1016/j.apenergy.2018.07.077.
  • Fang X. J. Zhu and Z. Lin. 2018. Effects of Electrode Composition and Thickness on the Mechanical Performance of a Solid Oxide Fuel Cell. Energies 11 (7):1735. doi:10.3390/en11071735.
  • Fischer W. J. Malzbender G. Blass and R. W. Steinbrech. 2005. Residual stresses in planar solid oxide fuel cells. Journal of Power Sources 150:73–77. doi:10.1016/j.jpowsour.2005.02.014.
  • Guo M. and Z. Lin. 2021. Long-term evolution of mechanical performance of solid oxide fuel cell stack and the underlying mechanism. International Journal of Hydrogen Energy 46 (47):24293–304. doi:10.1016/j.ijhydene.2021.04.196.
  • Guo M. X. Ru L. Yang M. Ni and Z. Lin. 2022. Effects of methane steam reforming on the mechanical stability of solid oxide fuel cell stack. Applied Energy 322:119464. doi:10.1016/j.apenergy.2022.119464.
  • Hubert O. X. Milhet P. Gadaud M. Tatat P.-O. Renault and C. Coupeau. 2015. Modeling of Young׳s modulus variations with temperature of Ni and oxidized Ni using a magneto-mechanical approach. Materials Science and Engineering: A 633:76–91. doi:10.1016/j.msea.2015.03.014.
  • Iguchi F. S. Akrasevee and Y. Miyoshi. 2018. Influence of NiO Reduction on Residual Strain in NiO/Ni-YSZ. Materials Transactions 59 (1):27–32. doi:10.2320/matertrans.MB201703.
  • Iguchi F. and K. Hinata. 2021. High-Temperature Elastic Properties of Yttrium-Doped Barium Zirconate. Metals 11 (6):968. doi:10.3390/met11060968.
  • Johnson J. and J. Qu. 2008. Effective modulus and coefficient of thermal expansion of Ni–YSZ porous cermets. Journal of Power Sources 181 (1):85–92. doi:10.1016/j.jpowsour.2008.03.035.
  • Kerner E. H. 1956. The elastic and thermo-elastic properties of composite media. Proceedings of the Physical Society: Section B 69 (8):808. doi:10.1088/0370-1301/69/8/305.
  • Kim S.-D. H. Moon S.-H. Hyun J. Moon J. Kim and H.-W. Lee. 2006. Nano-composite materials for high-performance and durability of solid oxide fuel cells. Journal of Power Sources 163 (1):392–97. doi:10.1016/j.jpowsour.2006.09.015.
  • Kong W. W. Zhang S. Zhang Q. Zhang and S. Su. 2016. Residual stress analysis of a micro-tubular solid oxide fuel cell. International Journal of Hydrogen Energy 41 (36):16173–80. doi:10.1016/j.ijhydene.2016.05.256.
  • Laurencin J. G. Delette F. Lefebvre-Joud and M. Dupeux. 2008. A numerical tool to estimate SOFC mechanical degradation: Case of the planar cell configuration. Journal of the European Ceramic Society 28 (9):1857–69. doi:10.1016/j.jeurceramsoc.2007.12.025.
  • Li Q. G. Cao X. Zhang Y. Ma and G. Li. 2021. Effects of non‐planar interface and electrode parameters on the residual stress of solid oxide fuel cell. International Journal of Energy Research 45 (2):2432–44. doi:10.1002/er.5937.
  • Li Q. G. Li G. Cao X. Zhang M. Cheng and Y. Ma. 2020. Effect of interface morphology on the residual stress distribution in solid oxide fuel cell. International Journal of Energy Research 44 (5):3497–509. doi:10.1002/er.5036.
  • Li J. N. Zhang Z. He K. Sun and Z. Wu. 2016. Preparation and characterization of one-dimensional nano-structured composite cathodes for solid oxide fuel cells. Journal of Alloys and Compounds 663:664–71. doi:10.1016/j.jallcom.2015.12.166.
  • Lugovy M. V. Slyunyayev M. Brodnikovskyy and R. Steinberger-Wilckens. 2020. Residual stress distribution in solid oxide fuel cells: Anode-electrolyte and anode-electrolyte-cathode systems. SN Applied Sciences 2 (3). doi:10.1007/s42452-020-2163-z.
  • Montross C. S. H. Yokokawa and M. Dokiya. 2002. Thermal stresses in planar solid oxide fuel cells due to thermal expansion differences. British Ceramic Transactions 101 (3):85–93. doi:10.1179/096797802225003956.
  • Mori M. Y. Hiei N. M. Sammes and G. A. Tompsett. 2000. Thermal-Expansion Behaviors and Mechanisms for Ca- or Sr-Doped Lanthanum Manganite Perovskites under Oxidizing Atmospheres. Journal of the Electrochemical Society 147 (4):1295. doi:10.1149/1.1393353.
  • Mori M. T. Yamamoto H. Itoh H. Inaba and H. Tagawa. 1998. Thermal Expansion of Nickel‐Zirconia Anodes in Solid Oxide Fuel Cells during Fabrication and Operation. Journal of the Electrochemical Society 145 (4):1374–81. doi:10.1149/1.1838468.
  • Nakajo A. J. Kuebler A. Faes U. F. Vogt H. J. Schindler L.-K. Chiang S. Modena J. Van Herle and T. Hocker. 2012. Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. Constitutive materials of anode-supported cells. Ceramics International 38 (5):3907–27. doi:10.1016/j.ceramint.2012.01.043.
  • Nakajo A. J. Van Herle and D. Favrat. 2011. Sensitivity of Stresses and Failure Mechanisms in SOFCs to the Mechanical Properties and Geometry of the Constitutive Layers. Fuel Cells 11 (4):537–52. doi:10.1002/fuce.201000108.
  • Nakajo A. Z. Wuillemin J. Van Herle and D. Favrat. 2009. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I: Probability of failure of the cells. Journal of Power Sources 193 (1):203–15. doi:10.1016/j.jpowsour.2008.12.050.
  • Ni D.-W. B. Charlas K. Kwok T. T. Molla P. V. Hendriksen and H. L. Frandsen. 2016. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports. Journal of Power Sources 311:1–12. doi:10.1016/j.jpowsour.2016.02.027.
  • Osman S. K. Ahmed and M. Ahmed. 2022. Performance of Two-Dimensional Functionally Graded Anode Supported Solid-Oxide Fuel Cells. Journal of Energy Resources Technology 144 (7):1–45. doi:10.1115/1.4053675.
  • Radovic M. and E. Lara-Curzio. 2004. Elastic Properties of Nickel-Based Anodes for Solid Oxide Fuel Cells as a Function of the Fraction of Reduced NiO. Journal of the American Ceramic Society 87 (12):2242–46. doi:10.1111/j.1151-2916.2004.tb07499.x.
  • Ramakrishnan N. and V. S. Arunachalam. 1990. Effective elastic moduli of porous solids. Journal of Materials Science 25 (9):3930–37. doi:10.1007/BF00582462.
  • Ramakrishnan N. and V. S. Arunachalam. 1993. Effective Elastic Moduli of Porous Ceramic Materials. Journal of the American Ceramic Society 76 (11):2745–52. doi:10.1111/j.1151-2916.1993.tb04011.x.
  • Schlegl H. and R. Dawson. 2017. Finite element analysis and modelling of thermal stress in solid oxide fuel cells. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy 231 (7):654–65. doi:10.1177/0957650917716269.
  • Seok C. J. Moon M. Park J. Hong H. Kim J.-W. Son J.-H. Lee B.-K. Kim H.-W. Lee and K. J. Yoon. 2016. Low-temperature co-sintering technique for the fabrication of multi-layer functional ceramics for solid oxide fuel cells. Journal of the European Ceramic Society 36 (6):1417–25. doi:10.1016/j.jeurceramsoc.2015.12.029.
  • Silva F. S. T. M. de Souza and T. Miguel De Souza. 2017. Novel materials for solid oxide fuel cell technologies: A literature review. International Journal of Hydrogen Energy 42 (41):26020–36. doi:10.1016/j.ijhydene.2017.08.105.
  • Song B. E. Ruiz-Trejo A. Bertei and N. P. Brandon. 2018. Quantification of the degradation of Ni-YSZ anodes upon redox cycling. Journal of Power Sources 374:61–68. doi:10.1016/j.jpowsour.2017.11.024.
  • Suh I.-K. H. Ohta and Y. Waseda. 1988. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. Journal of Materials Science 23 (2):757–60. doi:10.1007/BF01174717.
  • Sun B. R. A. Rudkin and A. Atkinson. 2009. Effect of Thermal Cycling on Residual Stress and Curvature of Anode‐Supported SOFCs. Fuel Cells 9 (6):805–13. doi:10.1002/fuce.200800133.
  • Tanaka J. K. Sato K. Yashiro T. Kawada and T. Hashida. 2022. Effects of temperature and hydrogen concentration during reduction on deformation behavior of NiO-yttria stabilized zirconia used in solid oxide fuel cells. Journal of Power Sources 535:231384. doi:10.1016/j.jpowsour.2022.231384.
  • Uemura S. and M. Takayanagi. 1966. Application of the theory of elasticity and viscosity of two-phase systems to polymer blends. Journal of Applied Polymer Science 10 (1):113–25. doi:10.1002/app.1966.070100109.
  • Wang Y. W. Jiang Y. Luo M. Song and S.-T. Tu. 2022. High temperature creep strength design and optimization of solid oxide fuel cell. International Journal of Hydrogen Energy 47 (50):21450–61. doi:10.1016/j.ijhydene.2022.04.261.
  • Wang C. Z. Xu and B. Koeppel. 2020. A discrete element model simulation of structure and bonding at interfaces between cathode and cathode contact paste in solid oxide fuel cells. Renewable Energy 157:998–1007. doi:10.1016/j.renene.2020.05.111.
  • Xue D. Q. Li S. Ma K. Liu and G. Li. 2022. Study on Residual Stress and Failure Probability of Waveform Interface of Solid Oxide Fuel Cell. In New Energy and Future Energy Systems 41–48. IOS Press. 10.3233/AERD220006
  • Zhang T. Q. Zhu W. L. Huang Z. Xie and X. Xin. 2008. Stress field and failure probability analysis for the single cell of planar solid oxide fuel cells. Journal of Power Sources 182 (2):540–45. doi:10.1016/j.jpowsour.2008.04.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.