176
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental analysis of the volumetric and thermal efficiency performance of a novel direct piezo-acting CVVT mechanism

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 948-958 | Received 02 Feb 2023, Accepted 09 Jun 2023, Published online: 21 Jun 2023

References

  • Anderson, M. D., T. Tsu-Chin, and M. B. Levin 1998. Adaptive lift control for a camless electrohydraulic valvetrain. 27th International Conference on Environmental Systems, Nevada, July 14-17.
  • Babitzka, R., W. Polach, and W. Schlagmüller 1984. Electro-hydraulic valve control system for internal combustion engine valves. United States Patent, 4466390, -08-21.
  • Bergstrom, G. 2001 System for control of an electromagnetic actuator. United States Patent, US006249418 01 19.
  • Chen, F., Y. Chang, Z. Xie, K. Zhang, T. Sun, L. Xiaorui, and Y. Huang. 2018. Simulation and experimental research of hydraulic pressure and intake valve lift on a fully hydraulic variable valve system for a spark-ignition engine. Advances in Mechanical Engineering 10 (5):1–11. doi:10.1177/1687814018773156.
  • Clifford, E. C., F. F. Glen, H. H. Richard, D. S. Ronald, and W. L Glenn 2003. Piezoelectric valve system. United States Patent, US006655654, 12 02.
  • Deokar, A. Y. 2013. “Working of piezoelectric controlled hydraulic actuator for camless engines.” In: Proceedings of International School of Business and Media School of Technology. January Accessed 15 November 2022. 10.13140/RG.2.2.23139.96805.
  • Dirim, B., A. Sürmen, M. Karamangil, A. Avcı, F. Işıklı, M. Tekin, and N. Türköz. 2019. “Electronic driver design of a piezo-actuated valve mechanism for continuously variable valve timing.” 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, November 28-30.
  • Duan, X., F. Jianqin, Z. Zhang, J. Liu, D. Zhao, and G. Zhu. 2017. Experimental study on the energy flow of a gasoline-powered vehicle under the NEDC of cold starting. Applied Thermal Engineering 115:1173–86. doi:10.1016/j.applthermaleng.2016.10.002.
  • Fukuo, K., T. Iwata, Y. Sakamoto, Y. Imai, K. Nakahara, and K. A. Lantz. 1997. Honda 3.0 liter, new V6. Source: SAE Transactions 106 (3):1570–79.
  • Gatecliff, G. W., D. R. Brower, G. E. Rado, and K. A. Novak 2004 Piezoelectric valve actuation. European patent, EP 1 375 846 A1, 01 02.
  • Ghazal, O., and M. S. H. Dado. 2013. Gear drive mechanism for continuous variable valve timing of IC engines. Engineering 5 (03):245–50. doi:10.4236/eng.2013.53035.
  • Hatano, K., K. Lida, H. Higashi, and S. Murata. 1993. Development of a New Multi-Mode Variable Valve Timing Engine. International Congress and Exposition, Detroit, 1-5 March
  • Heywood, J. B. 1988. Internal combustion engine fundamentals. New York: McGraw-Hill.
  • Hong, H., G. B. Parvate-Patil, and B. Gordon. 2004. Review and analysis of variable valve timing strategies—eight ways to approach. Proceedings Institution Mechanical Engineering 218 (10):1179–200. doi:10.1177/095440700421801013.
  • Jianqin, F., J. Liu, Y. Yang, C. Ren, and G. Zhu. 2013. A new approach for exhaust energy recovery of internal combustion engine: Steam turbocharging. Applied Thermal Engineering 52 (1):150–59. doi:10.1016/j.applthermaleng.2012.11.035.
  • Joshua, M. D. 2006 Camless engine hydraulic valve actuated system. United States Patent, US 20060150935, 07 13.
  • Li, Y., A. Khajepour, and C. Devaud. 2018. Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines. Applied Energy 222:199–215. doi:10.1016/j.apenergy.2018.04.012.
  • Li, Y., A. Khajepour, C. Devaud, and K. Liu. 2017. Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system. Applied Energy 206:577–93. doi:10.1016/j.apenergy.2017.08.208.
  • Lindler, J. E., E. H. Anderson, and M. E. Regelbrugge. 2003. Design and testing of piezoelectric-hydraulic actuators. Smart Structures and Materials 5054:96–107. http://proceedings.spiedigitallibrary.org/.
  • Ling, M., H. Xin, W. Mengxiang, and L. Cao. 2022. Dynamic design of a novel high-speed piezoelectric flow control valve based on compliant mechanism. IEEE/ASME Transactions on Mechatronics 27 (6):1–9. doi:10.1109/TMECH.2022.3169761.
  • Lu, Q., J. Wen, H. Yili, L. Jianping, and M. Jijie. 2021. An integrated piezoelectric inertial actuator controlled by cam mechanisms. IEEE Access 9:152756–64. doi:10.1109/ACCESS.2021.3128063.
  • Maekawa, K., N. Ohsawa, and A. Akasaka. 1989. Development of a Valve Timing Control System. International Congress and Exposition, Detroit, February 27-March 3.
  • Mercorelli, P., and N. Werner. 2016. Integrating a piezoelectric actuator with mechanical and hydraulic devices to control camless engines. Mechanical Systems and Signal Processing 78 (October):55–70. doi:10.1016/j.ymssp.2015.12.038.
  • Moriya, Y., A. Watanabe, H. Uda, H. Kawamura, M. Yoshioka, and M. Adachi. 1996. A newly developed intelligent variable valve timing system-continuously controlled cam phasing as applied to a new 3 liter inline 6 engine global mobility database a newly developed intelligent variable valve timing system-continuously controlled cam phasing as applied to a new 3 liter inline 6 engine. International Congress & Exposition, Detroit, February 25-29.
  • Nagaya, K., H. Kobayashi, and K. Koike. 2006. Valve timing and valve lift control mechanism for engines. Mechatronics 16 (2):121–29. doi:10.1016/j.mechatronics.2005.09.007.
  • Nayak, S., and M. Rao. 2019. Design and development of a flexurally amplified piezoelectric actuator based piezo-hydraulic pump. Materials Today: Proceedings 46:9956–65. doi:10.1016/j.matpr.2021.03.314.
  • Ogura, M., and T. Sasaki 2003. Performance improvement of a four-cylinder gasoline engine with continuous variable valve timing mechanism using a three-dimensional cam. SAE Technical paper 2003-32-0052. 10.4271/2003-32-0052.
  • Pan, J., A. Khajepour, L. Yangtao, J. Yang, and W. Liu. 2021. Performance and power consumption optimization of a hydraulic variable valve actuation system. Mechatronics 73:1–18. doi:10.1016/j.mechatronics.2020.102479.
  • Pournazeri, M., A. Khajepour, and Y. Huang. 2018. Improving energy efficiency and robustness of a novel variable valve actuation system for engines. Mechatronics 50:121–33. doi:10.1016/j.mechatronics.2018.02.002.
  • Schäfer, J., and J. Balko. 2007. High performance electric camshaft phasing system. Detroit: World Congress. 2007April 16-19.
  • Sdattanagar, M., N. Karanth, and S. M. Kulkarni. 2020. Performance analysis of valveless micropump with disposable chamber actuated through Amplified Piezo Actuator (APA) for biomedical application. Mechatronics 67:102347–62.
  • Shikida, T., Y. Nakamura, T. Nakakubo, and H. Kawase. 2000. Development of the High Speed 2ZZ-GE Engine. SAE 2000 World Congress, Detroit, March 6-9.
  • Simic, M., and N. Herakovic. 2021. Characterization of energy consumption of new piezo actuator system used for hydraulic on/off valves. Journal of Cleaner Production 284:1–11. doi:10.1016/j.jclepro.2020.124748.
  • Sok, R., K. Takeuchi, K. Yamaguchi, and J. Kusaka 2020. Numerical methods on VVA and VCR concepts for fuel economy improvement of a commercial CNG truck. SAE Technical paper. 2020-01-2083. doi:10.4271/2020-01-2083.
  • Sürmen, A., R. Arslan, O. Kopmaz, A. Avcı, İ. Karagöz, M. İ̇hsan Karamangil, M. ?°, and H. Karamangil. 2017. Development of a variable-profile cam to enhance the volumetric efficiency of IC engines. International Journal Vehicle Design 73 (1/2/3):63–75. doi:10.1504/IJVD.2017.082581.
  • Szydlowski, T., K. Siczek, and M. Glogowski. 2022. The effect of machined valve springs application on dynamic properties of electro-hydraulically driven valve train. Combustion Engines 191 (4):92–104. doi:10.19206/ce-148172.
  • Takemura, S., S. Aoyama, T. Sugiyama, T. Nohara, K. Moteki, M. Nakamura, and S. Hara, 2001. A study of a continuous variable Valve Event and Lift (VEL) system. SAE Technical paper 2001-01-0243. 10.4271/2001-01-0243.
  • Taşlıyol, M. 2011. Elektro-mekanik denetimli supap sisteminde değişken supap zamanlamasi Master’s Thesis, Karabuk University.
  • Vilarinho, P. M., T. Ribeiro, R. Laranjeira, J. Pinho, A. I. Kingon, and M. Elisabete Costa. 2022. Performance of piezoelectric actuators in gas microvalves: An Engineering Case Study. Sensors and Actuators A: Physical 344:1–11. doi:10.1016/j.sna.2022.113703.
  • Wang, J., X. Duan, W. Wang, J. Guan, Y. Li, and J. Liu. 2021. Effects of the continuous variable valve lift system and miller cycle strategy on the performance behavior of the lean-burn natural gas spark ignition engine. Fuel 297:1–17. doi:10.1016/j.fuel.2021.120762.
  • Woo, J., D. Kee Sohn, and K. Han Seo. 2020. Analysis of stiffness effect on valve behavior of a reciprocating pump operated by piezoelectric elements. Micromachines 11 (10):1–13. doi:10.3390/mi11100894.
  • Zhengxin, X., F. Jianqin, J. Liu, Z. Yuan, J. Shu, and L. Tan. 2017. Comparison of in-cylinder combustion and heat-work conversion processes of vehicle engine under transient and steady-State conditions. Energy Conversion and Management 132:400–09. doi:10.1016/j.enconman.2016.11.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.