126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An efficient optimization strategy for vapor compression–absorption-based cascaded refrigeration system using various evolutionary techniques

, , &
Pages 1185-1200 | Received 03 Jan 2023, Accepted 28 Jul 2023, Published online: 14 Aug 2023

References

  • Agnew, B., and S. M. Ameli. 2004. A finite time analysis of a cascade refrigeration system using alternative refrigerants. Applied Thermal Engineering 24 (17–18):2557–65. doi:10.1016/J.APPLTHERMALENG.2004.03.013.
  • Ahmad, S., B. Linnhoff, and R. Smith. 1990. Cost optimum heat exchanger networks—2. targets and design for detailed capital cost models. Computers & Chemical Engineering 14 (7):751–67. doi:10.1016/0098-1354(90)87084-3.
  • Ahmed, F., and W. Chen. 2023. Investigation of steam ejector parameters under three optimization algorithm using ANN. Applied Thermal Engineering 225 (May):120205. doi:10.1016/J.APPLTHERMALENG.2023.120205.
  • Ahmed, R., S. Mahadzir, N. Erniza B Rozali, K. Biswas, F. Matovu, and K. Ahmed. 2021. Artificial intelligence techniques in refrigeration system modelling and optimization: A multi-disciplinary review. Sustainable Energy Technologies and Assessments 47 (October):101488. doi:10.1016/J.SETA.2021.101488.
  • Aminyavari, M., B. Najafi, A. Shirazi, and F. Rinaldi. 2014. Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system. Applied Thermal Engineering 65 (1–2):42–50. doi:10.1016/J.APPLTHERMALENG.2013.12.075.
  • Arshad, M. U., M. Usman Ghani, A. Ullah, A. Güngör, and M. Zaman. 2019. Thermodynamic analysis and optimization of double effect absorption refrigeration system using genetic algorithm. Energy Conversion and Management 192 (July):292–307. doi:10.1016/J.ENCONMAN.2019.03.083.
  • Asgari, S., A. R. Noorpoor, and F. Ahmadi Boyaghchi. 2017. Parametric assessment and multi-objective optimization of an internal auto-cascade refrigeration cycle based on advanced exergy and exergoeconomic concepts. Energy 125:576–90. doi:10.1016/J.ENERGY.2017.02.158.
  • Askarzadeh, A. 2016. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures 169:1–12. doi:10.1016/J.COMPSTRUC.2016.03.001.
  • Bai, T., H. Xie, S. Liu, G. Yan, and Y. Jianlin. 2021. Experimental investigation on the influence of ejector geometry on the pull-down performance of an ejector-enhanced auto-cascade low-temperature freezer. International Journal of Refrigeration 131:41–50. doi:10.1016/j.ijrefrig.2021.08.021.
  • Bhattacharyya, S., S. Mukhopadhyay, A. Kumar, R. K. Khurana, and J. Sarkar. 2005. Optimization of a CO2–C3H8 cascade system for refrigeration and heating. International Journal of Refrigeration 28 (8):1284–92. doi:10.1016/J.IJREFRIG.2005.08.010.
  • Boyaghchi, F. A., M. Mahmoodnezhad, and V. Sabeti. 2016. Exergoeconomic analysis and optimization of a solar driven dual-evaporator vapor compression-absorption cascade refrigeration system using Water/CuO Nanofluid. Journal of Cleaner Production 139:970–85. doi:10.1016/J.JCLEPRO.2016.08.125.
  • Cheng, M. Y., and D. Prayogo. 2014. Symbiotic organisms search: A new metaheuristic optimization algorithm. Computers & Structures 139:98–112. doi:10.1016/J.COMPSTRUC.2014.03.007.
  • Chen, D., Y. Luo, and X. Yuan. 2020. Refrigeration system synthesis by continuous temperature level optimization considering the sub-cooler configuration. Computers & Chemical Engineering 141:107031. doi:10.1016/J.COMPCHEMENG.2020.107031.
  • Dai, B., Y. Cao, S. Liu, J. Yalan, Z. Sun, X. Tianyahui, P. Zhang, and V. Nian. 2022. Annual energetic evaluation of multistage dedicated mechanical subcooling carbon dioxide supermarket refrigeration system in different climate regions of china using genetic algorithm. Journal of Cleaner Production 333:130119. doi:10.1016/J.JCLEPRO.2021.130119.
  • Dhiman, G., and V. Kumar. 2017. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software 114:48–70. doi:10.1016/j.advengsoft.2017.05.014.
  • Dopazo, J. Alberto, J. Fernández-Seara, J. Sieres, and F. J. Uhía. 2009. Theoretical analysis of a CO2–NH3 cascade refrigeration system for cooling applications at low temperatures. Applied Thermal Engineering 29 (8–9):1577–83. doi:10.1016/J.APPLTHERMALENG.2008.07.006.
  • Eini, S., H. Shahhosseini, N. Delgarm, M. Lee, and A. Bahadori. 2016. Multi-objective optimization of a cascade refrigeration system: Exergetic, economic, environmental, and inherent safety analysis. Applied Thermal Engineering 107:804–17. doi:10.1016/J.APPLTHERMALENG.2016.07.013.
  • Giannetti, N., A. Milazzo, A. Rocchetti, and K. Saito. 2017. Cascade refrigeration system with inverse Brayton cycle on the cold side. Applied Thermal Engineering 127:986–95. doi:10.1016/J.APPLTHERMALENG.2017.08.067.
  • Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning. In Choice reviews online, Vol. 27. Addison-Wesley Longman Publishing Co., Inc. doi:10.5860/CHOICE.27-0936.
  • Grosu, L., R. Benelmir, and M. Feidt. 1999. Technico-economic simulation and optimization of a compression refrigerating machine. Energy Conversion and Management 40 (15–16):1651–60. doi:10.1016/S0196-8904(99)00058-8.
  • Guohua, W., P. N. S. Rammohan Mallipeddi, R. Wang, and H. Chen. 2016. Differential evolution with multi-population based ensemble of mutation strategies. Information Sciences 329:329–45. doi:10.1016/j.ins.2015.09.009.
  • Hadidi, A. 2017. A novel approach for optimization of electrically serial two-stage thermoelectric refrigeration systems using Chemical Reaction Optimization (CRO) Algorithm. Energy 140:170–84. doi:10.1016/J.ENERGY.2017.08.087.
  • Hao, X., N. Gao, G. Chen, O. Volovyk, X. Wang, and Y. Xuan. 2022. Experimental investigation of the ejector refrigeration cycle for cascade system application. Journal of Thermal Science 31 (5):1476–86. doi:10.1007/s11630-020-1367-2.
  • Huan, F. R., H. Z. Guang, and X. Zhang. 2018. Life cycle cost based optimization design method for an integrated cooling system with multi-operating modes. Applied Thermal Engineering 140:432–41. doi:10.1016/J.APPLTHERMALENG.2018.05.082.
  • IEA. 2022. “Space cooling.” https://www.iea.org/reports/space-cooling.
  • Jain, V., G. Sachdeva, and S. S. Kachhwaha. 2015a. NLP model based thermoeconomic optimization of vapor compression–absorption cascaded refrigeration system. Energy Conversion and Management 93:49–62. doi:10.1016/J.ENCONMAN.2014.12.095.
  • Jain, V., G. Sachdeva, and S. Singh Kachhwaha. 2015b. Energy, exergy, economic and environmental (4E) analyses based comparative performance study and optimization of vapor compression-absorption integrated refrigeration system. Energy 91:816–32. doi:10.1016/J.ENERGY.2015.08.041.
  • Jain, V., N. Sharma, G. Sachdeva, and S. S. Kachhwaha. 2019. Performance analysis and multi-objective optimization of cooling tower assisted vapor compression-absorption cascaded and hybrid refrigeration systems. International Journal of Green Energy 16 (13):1024–45. doi:10.1080/15435075.2019.1653874.
  • Karaboga, D., and B. Bahriye 2007. “Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems.” ed. P. Melin, O. Castillo, L. T. Aguilar, J. Kacprzyk, and W. Pedrycz. Foundations of Fuzzy Logic and Soft Computing: 12th International Fuzzy Systems Association World Congress, IFSA 2007, Cancun, Mexico June 18-21, 2007. Proceedings. Springer Berlin Heidelberg. doi:10.1007/978-3-540-72950-1_77.
  • Kommadath, R., C. Sivadurgaprasad, and P. Kotecha. 2016. “Single phase multi-group teaching learning algorithm for computationally expensive numerical optimization (CEC 2016).” 2016 IEEE Congress on Evolutionary Computation, CEC 2016, 2989–95. doi:10.1109/CEC.2016.7744167.
  • Kong, D., X. Yin, X. Ding, N. Fang, and P. Duan. 2021. Global optimization of a vapor compression refrigeration system with a self-adaptive differential evolution algorithm. Applied Thermal Engineering 197:117427. doi:10.1016/j.applthermaleng.2021.117427.
  • Lansing, F. L. 1976. Computer modeling of a single-stage lithium bromide/water absorption refrigeration unit. The Deep Space Network Progress Report 42–32:247–57. https://ipnpr.jpl.nasa.gov/progress_report/42-32/32AA.PDF
  • Lee, T. S., C. Hao Liu, and T. Wei Chen. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. International Journal of Refrigeration 29 (7):1100–08. doi:10.1016/J.IJREFRIG.2006.03.003.
  • Lian, B., H. Yan, and J. Wang. 2022. Performance analysis of three heuristic algorithms for airfoil design optimization. International Journal of Green Energy 19 (4):349–64. doi:10.1080/15435075.2021.1946813.
  • Li, N., C. Luo, and S. Qingquan. 2018. A working pair of CaCl2–LiBr–LiNO3/H2O and its application in a single-stage solar-driven absorption refrigeration cycle. International Journal of Refrigeration 86:1–13. doi:10.1016/J.IJREFRIG.2017.11.004.
  • Lizarte, R., M. E. Palacios-Lorenzo, and J. D. Marcos. 2017. Parametric study of a novel organic rankine cycle combined with a Cascade Refrigeration Cycle (ORC-CRS) using natural refrigerants. Applied Thermal Engineering 127:378–89. doi:10.1016/J.APPLTHERMALENG.2017.08.063.
  • Mirjalili, S. 2015. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems 89:228–49. doi:10.1016/j.knosys.2015.07.006.
  • Mondal, S., C. Sahana, and D. Sudipta. 2022. Strategic Integration of Single Flash Geothermal Steam Cycle (SFGSC) and Ejector Assisted Dual-Evaporator Organic Flash Refrigeration Cycle (EADEOFRC) for power and multi-temperature cooling: 2nd Law performance study. International Journal of Green Energy 19 (13):1415–27. doi:10.1080/15435075.2021.2005604.
  • Mosaffa, A. H., L. Garousi Farshi, C. A. Infante Ferreira, and M. A. Rosen. 2016. Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers. Energy Conversion and Management 117:442–53. doi:10.1016/J.ENCONMAN.2016.03.053.
  • Nasir, M., S. Das, D. Maity, S. Sengupta, U. Halder, and P. N. Suganthan. 2012. A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Information Sciences 209:16–36. doi:10.1016/J.INS.2012.04.028.
  • Nasruddin, S. S., N. Giannetti, and Arnas. 2016. Optimization of a cascade refrigeration system using refrigerant C3H8 in High Temperature Circuits (HTC) and a Mixture of C2H6/CO2 in Low Temperature Circuits (LTC). Applied Thermal Engineering 104:96–103. doi:10.1016/J.APPLTHERMALENG.2016.05.059.
  • Patel, B., N. B. Desai, and S. S. Kachhwaha. 2017. Optimization of waste heat based organic rankine cycle powered cascaded vapor compression-absorption refrigeration system. Energy Conversion and Management 154:576–90. doi:10.1016/J.ENCONMAN.2017.11.045.
  • Patel, V., D. Panchal, A. Prajapati, A. Mudgal, and P. Davies. 2019. An efficient optimization and comparative analysis of cascade refrigeration system using NH3/CO2 and C3H8/CO2 refrigerant pairs. International Journal of Refrigeration 102:62–76. doi:10.1016/J.IJREFRIG.2019.03.001.
  • Pati, S., and O. Prakash Verma. 2021. Performance optimization of multiple stage evaporator using interior-point method and metaheuristic approaches in environment of real-time plant complexities. International Journal of Green Energy 18 (9):933–50. doi:10.1080/15435075.2021.1884868.
  • Rahman, A. A., and X. Zhang. 2019. Single-objective optimization for stack unit of standing wave thermoacoustic refrigerator through particle swarm optimization method. Energy Procedia 158:5445–52. doi:10.1016/J.EGYPRO.2019.01.603.
  • Rezayan, O., and A. Behbahaninia. 2011. Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems. Energy 36 (2):888–95. doi:10.1016/J.ENERGY.2010.12.022.
  • Sun, X., L. Liu, Y. Dong, Y. Zhuang, L. Jiao, D. Jian, and H. Yin. 2021. Multi-objective optimization and thermo-economic analysis of an enhanced compression-absorption cascade refrigeration system and ORC integrated system for cooling and power cogeneration. Energy Conversion and Management 236:114068. doi:10.1016/j.enconman.2021.114068.
  • Tan, Y., L. Wang, and K. Liang. 2015. Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa. Applied Thermal Engineering 84:268–75. doi:10.1016/J.APPLTHERMALENG.2015.03.047.
  • Turgut, M. S., and O. Emrah Turgut. 2019. Comparative investigation and multi objective design optimization of R744/R717, R744/R134a and R744/R1234yf Cascade Refrigeration Systems. Heat & Mass Transfer/Waerme- und Stoffuebertragung 55 (2):445–65. doi:10.1007/s00231-018-2435-y.
  • Wolpert, D. H., and W. G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1 (1):67–82. doi:10.1109/4235.585893.
  • Xia, L., Q. Chen, J. Hong Hao, X. Chen, and H. Ke Lun. 2019. Heat current method for analysis and optimization of a refrigeration system for aircraft environmental control system. International Journal of Refrigeration 106:163–80. doi:10.1016/J.IJREFRIG.2019.06.004.
  • Yang, X. S. 2012. Flower pollination algorithm for global optimization. Lecture Notes in Computer Science 7445 LNCS:240–49. doi:10.1007/978-3-642-32894-7_27.
  • Yilmaz, F., and R. Selbaş. 2019. Comparative thermodynamic performance analysis of a cascade system for cooling and heating applications. International Journal of Green Energy 16 (9):674–86. doi:10.1080/15435075.2019.1618308.
  • Zhang, H., X. Pan, J. Chen, and J. Xie. 2023. Energy, exergy, economic and environmental analyses of a cascade absorption-compression refrigeration system using two-stage compression with complete intercooling. Applied Thermal Engineering 225:120185. doi:10.1016/j.applthermaleng.2023.120185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.