90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of non-uniform temperature distribution in air-cooled proton exchange membrane fuel cells with multizone temperature measurement

, , , , &
Pages 2228-2238 | Received 13 Sep 2023, Accepted 20 Dec 2023, Published online: 29 Dec 2023

References

  • Chang, H., F. Cai, X. Yu, C. Duan, S. H. Chan, and Z. Tu. 2023. Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates. Energy 263:125724. doi:10.1016/j.energy.2022.125724.
  • Chen, Y., Q. Jian, J. Zhao, X. Bai, D. Li, and Z. Huang. 2021. Experimental analysis of dynamic performance of air-cooled PEMFC stack integrated ultrathin vapor chambers under new European driving cycle. International Journal of Energy Research 45 (14):20089–103. doi:10.1002/er.7085.
  • Chen, X., S. Long, L. He, C. Wang, F. Chai, X. Kong, Z. Wan, X. Song, and Z. Tu. 2022. Performance evaluation on thermodynamics-economy-environment of PEMFC vehicle power system under dynamic condition. Energy Conversion and Management 269:116082. doi:10.1016/j.enconman.2022.116082.
  • D’Souza, C., M. Apicella, A. El-Kharouf, E. Stamatakis, M. Khzouz, A. Stubos, and E. I. Gkanas. 2020. Thermal characteristics of an air-cooled open-cathode proton exchange membrane fuel cell stack via numerical investigation. International Journal of Energy Research 44 (14):11597–613. doi:10.1002/er.5785.
  • Guo, H., M. H. Wang, J. X. Liu, Z. H. Nie, F. Ye, and C. F. Ma. 2015. Temperature distribution on anodic surface of membrane electrode assembly in proton exchange membrane fuel cell with interdigitated flow bed. Journal of Power Sources 273:775–83. doi:10.1016/j.jpowsour.2014.09.159.
  • Guo, H., M. H. Wang, F. Ye, and C. F. Ma. 2012. Experimental study of temperature distribution on anodic surface of MEA inside a PEMFC with parallel channels flow bed. International Journal of Hydrogen Energy 37 (17):13155–60. doi:10.1016/j.ijhydene.2012.03.138.
  • Huang, Z., Q. Jian, L. Luo, B. Huang, X. Bai, and D. Li. 2021. Rapid thermal response and sensitivity analysis of proton exchange membrane fuel cell stack with ultra-thin vapor chambers. Applied Thermal Engineering 199:117526. doi:10.1016/j.applthermaleng.2021.117526.
  • Liang, J., B. Wang, Y. Yin, and K. Jiao. 2023. Experimental investigation of operating characteristics of proton exchange membrane fuel cell with different anode strategies based on the segmented cell. International Journal of Green Energy 1–18. doi:10.1080/15435075.2023.2219730.
  • Ling, C. Y., H. Cao, Y. Chen, M. Han, and E. Birgersson. 2016. Compact open cathode feed system for PEMFCs. Applied Energy 164:670–75. doi:10.1016/j.apenergy.2015.12.012.
  • Liu, Q., H. Xu, Z. Lin, Z. Zhu, H. Wang, and Y. Yuan. 2023. Experimental study of the thermal and power performances of a proton exchange membrane fuel cell stack affected by the coolant temperature. Applied Thermal Engineering 225:120211. doi:10.1016/j.applthermaleng.2023.120211.
  • Luo, L., Q. Jian, B. Huang, Z. Huang, J. Zhao, and S. Cao. 2019a. Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack. Renewable Energy 143:1067–78. doi:10.1016/j.renene.2019.05.085.
  • Luo, L., Q. Jian, B. Huang, Z. Huang, J. Zhao, and S. Cao. 2019b. Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack. Renewable Energy 143:1067–1078. doi:10.1016/j.renene.2019.05.085.
  • Madheswaran, D. K., A. Jayakumar, and E. G. Varuvel. 2022. Recent advancement on thermal management strategies in PEM fuel cell stack: A technical assessment from the context of fuel cell electric vehicle application. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (2):3100–25. doi:10.1080/15567036.2022.2058122.
  • Meyer, Q., K. Ronaszegi, J. B. Robinson, M. Noorkami, O. Curnick, S. Ashton, A. Danelyan, T. Reisch, P. Adcock, R. Kraume, et al. 2015. Combined current and temperature mapping in an air-cooled, open-cathode polymer electrolyte fuel cell under steady-state and dynamic conditions. Journal of Power Sources 297:315–322. doi:10.1016/j.jpowsour.2015.07.069.
  • Pan, M., X. Meng, C. Li, J. Liao, and C. Pan. 2020. Impact of nonuniform reactant flow rate on the performance of proton exchange membrane fuel cell stacks. International Journal of Green Energy 17 (11):603–16. doi:10.1080/15435075.2020.1761812.
  • Park, J., and X. Li. 2006. Effect of flow and temperature distribution on the performance of a PEM fuel cell stack. Journal of Power Sources 162 (1):444–459. doi:10.1016/j.jpowsour.2006.07.030.
  • Pei, H., J. Shen, Y. Cai, Z. Tu, Z. Wan, Z. Liu, and W. Liu. 2014. Operation characteristics of air-cooled proton exchange membrane fuel cell stacks under ambient pressure. Applied Thermal Engineering 63 (1):227–33. doi:10.1016/j.applthermaleng.2013.11.012.
  • Penga, Ž., I. Pivac, and F. Barbir. 2017. Experimental validation of variable temperature flow field concept for proton exchange membrane fuel cells. International Journal of Hydrogen Energy 42 (41):26084–93. doi:10.1016/j.ijhydene.2017.08.135.
  • Peng, C., H. Gu, G. Zhang, K. Luo, P. Xu, S. Lv, Q. Zhang, and G. Chen. 2023. Numerical study on heat transfer enhancement of a proton exchange membrane fuel cell with the dimpled cooling channel. International Journal of Hydrogen Energy 48 (8):3122–34. doi:10.1016/j.ijhydene.2022.10.136.
  • Qiu, D., L. Peng, J. Tang, and X. Lai. 2020. Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels. Energy 198:198. doi:10.1016/j.energy.2020.117334.
  • Qiu, D., X. Zhou, M. Chen, Z. Xu, and L. Peng. 2023. Optimization of control strategy for air-cooled PEMFC based on in-situ observation of internal reaction state. Applied Energy 350:121752. doi:10.1016/j.apenergy.2023.121752.
  • Radu, R., N. Zuliani, and R. Taccani. 2011. Design and experimental characterization of a high-temperature proton exchange membrane fuel cell stack. Journal of Fuel Cell Science and Technology 8 (5):051007. doi:10.1115/1.4003753.
  • Ramousse, J., K. P. Adzakpa, Y. Dube, K. Agbossou, M. Fournier, A. Poulin, and M. Dostie. 2010. Local voltage degradations (drying and flooding) analysis through 3D stack thermal modeling. Journal of Fuel Cell Science and Technology 7 (4):041006. doi:10.1115/1.4000626.
  • Ravishankar, S., and K. A. Prakash. 2014. Numerical studies on thermal performance of novel cooling plate designs in polymer electrolyte membrane fuel cell stacks. Applied Thermal Engineering 66 (1–2):239–251. doi:10.1016/j.applthermaleng.2014.01.068.
  • Sajid Hossain, M., and B. Shabani. 2015. Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells. Journal of Power Sources 295:275–91. doi:10.1016/j.jpowsour.2015.07.022.
  • Shahsavari, S., A. Desouza, M. Bahrami, and E. Kjeang. 2012. Thermal analysis of air-cooled PEM fuel cells. International Journal of Hydrogen Energy 37 (23):18261–18271. doi:10.1016/j.ijhydene.2012.09.075.
  • Song, Y., C. Zhang, A. Deshpande, K. Tan, and M. Han. 2020. Fixed air flow-rate selection by considering the self-regulating function of low power air-cooled PEMFC stack. International Journal of Heat and Mass Transfer 158:119771. doi:10.1016/j.ijheatmasstransfer.2020.119771.
  • Wei, L., A. M. Dafalla, Z. Liao, J. Guo, X. Ai, and F. Jiang. 2023. Improved flow field design for air-cooled proton exchange membrane fuel cells. International Journal of Green Energy 21 (1):1–13. doi:10.1080/15435075.2023.2194396.
  • Xiao, C., B. Wang, C. Wang, and Y. Yan. 2023. Design of a novel fully-active PEMFC-Lithium battery hybrid power system based on two automatic ON/OFF switches for unmanned aerial vehicle applications. Energy Conversion and Management 292:117417. doi:10.1016/j.enconman.2023.117417.
  • Yin, C., Y. Gao, K. Li, D. Wu, Y. Song, and H. Tang. 2021. Design and numerical analysis of air-cooled proton exchange membrane fuel cell stack for performance optimization. Energy Conversion and Management 245:114604. doi:10.1016/j.enconman.2021.114604.
  • Yu, X., H. Chang, J. Zhao, and Z. Tu. 2022. Effects of anode flow channel on performance of air-cooled proton exchange membrane fuel cell. Energy Reports 8:4443–52. doi:10.1016/j.egyr.2022.03.128.
  • Zeng, T., C. Zhang, Z. Huang, M. Li, S. H. Chan, Q. Li, and X. Wu. 2019. Experimental investigation on the mechanism of variable fan speed control in Open cathode PEM fuel cell. International Journal of Hydrogen Energy 44 (43):24017–27. doi:10.1016/j.ijhydene.2019.07.119.
  • Zhao, J., Z. Huang, B. Jian, X. Bai, and Q. Jian. 2020. Thermal performance enhancement of air-cooled proton exchange membrane fuel cells by vapor chambers. Energy Conversion and Management 213:112830. doi:10.1016/j.enconman.2020.112830.
  • Zhao, Y., Y. Liu, G. Liu, Q. Yang, L. Li, and Z. Gao. 2022. Air and hydrogen supply systems and equipment for PEM fuel cells: A review. International Journal of Green Energy 19 (4):331–48. doi:10.1080/15435075.2021.1946812.
  • Zhao, C., B. Li, S. Xing, R. Wei, H. Song, and H. Wang. 2022. Performance and design optimization of different numbers and bolt torque for air-cooled open-cathode proton exchange membrane fuel cells. Journal of Power Sources 530:231322. doi:10.1016/j.jpowsour.2022.231322.
  • Zhao, C., S. Xing, M. Chen, W. Liu, and H. Wang. 2020. Optimal design of cathode flow channel for air-cooled PEMFC with open cathode. International Journal of Hydrogen Energy 45 (35):17771–17781. doi:10.1016/j.ijhydene.2020.04.165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.