206
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches

, , , , , , , & show all
Received 21 Oct 2023, Accepted 27 Feb 2024, Published online: 14 Mar 2024

References

  • Abdullah, N., R. Mohd Taib, N. S. Mohamad Aziz, M. R. Omar, and N. Md Disa. 2023. Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon 9 (1):e12940. doi:10.1016/j.heliyon.2023.e12940.
  • Adebayo, T. S. 2022. Environmental consequences of fossil fuel in Spain amidst renewable energy consumption: A new insights from the wavelet-based Granger causality approach. International Journal of Sustainable Development & World Ecology 29 (7):579–92. doi:10.1080/13504509.2022.2054877.
  • Adeniyi, A. G., V. T. Amusa, E. C. Emenike, and K. O. Iwuozor. 2023. Co-carbonization of waste biomass with expanded polystyrene for enhanced biochar production. Biofuels 14 (6):635–43. doi:10.1080/17597269.2022.2161133.
  • Adeniyi, A. G., J. O. Ighalo, and D. V. Onifade. 2021. Production of bio-char from plantain (musa Paradisiaca) fibers using an updraft biomass gasifier with retort heating. Combustion Science and Technology 193 (1):60–74. doi:10.1080/00102202.2019.1650269.
  • Adeniyi, A. G., K. O. Iwuozor, K. B. Muritala, E. C. Emenike, and J. A. Adeleke. 2023. Conversion of biomass to biochar using top‐lit updraft technology: A review. Biofuels, Bioproducts and Biorefining 17 (5):1411–24. doi:10.1002/bbb.2497.
  • Adeniyi, A. G., S. Ogunniyi, K. O. Iwuozor, and E. C. Emenike. 2023. Thermochemical conversion of African balsam leaves‐cow dung hybrid wastes into biochar. Biofuels, Bioproducts and Biorefining 17 (3):510–22. doi:10.1002/bbb.2453.
  • Aisman, S., and R. A. Hadiguna. 2020. Design of sustainable agricultural-based biomass electrification model in the islands area: Prospect of Bamboo biomass. International Journal on Advanced Science, Engineering and Information Technology 10 (5):2145–51. doi:10.18517/ijaseit.10.5.13421.
  • Alabdrabalnabi, A., R. Gautam, and S. Mani Sarathy. 2022. Machine learning to predict biochar and bio-oil yields from co-pyrolysis of biomass and plastics. Fuel 328:125303. doi:10.1016/j.fuel.2022.125303.
  • Al-Mulali, U. 2015. The impact of biofuel energy consumption on GDP growth, co 2 emission, agricultural crop prices, and agricultural production. International Journal of Green Energy 12 (11):1100–06. doi:10.1080/15435075.2014.892878.
  • Al-Rumaihi, A., M. Shahbaz, G. Mckay, H. Mackey, and T. Al-Ansari. 2022. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews 167:112715. doi:10.1016/j.rser.2022.112715.
  • Amador-Sacoto, C., and S. Helfgott-Lerner. 2023. Sustainability of sugarcane farms in the Milagro Canton, Ecuador. International Journal on Advanced Science, Engineering and Information Technology 13 (3):837–43. doi:10.18517/ijaseit.13.3.18654.
  • Anand, A., S. Pathak, V. Kumar, and P. Kaushal. 2022. Biochar production from crop residues, its characterization and utilization for electricity generation in India. Journal of Cleaner Production 368:133074. doi:10.1016/j.jclepro.2022.133074.
  • Aniza, R., W.-H. Chen, A. Pétrissans, A. T. Hoang, V. Ashokkumar, and M. Pétrissans. 2023. A review of biowaste remediation and valorization for environmental sustainability: Artificial intelligence approach. Environmental Pollution 324:121363. doi:10.1016/j.envpol.2023.121363.
  • Antwarg, L., R. M. Miller, B. Shapira, and L. Rokach. 2021. Explaining anomalies detected by autoencoders using shapley additive explanations. Expert Systems with Applications 186:115736. doi:10.1016/j.eswa.2021.115736.
  • Ariffin, M. A., W. M. F. Wan Mahmood, R. Mohamed, and M. T. Mohd nor. 2016. Performance of oil palm kernel shell gasification using a medium-scale downdraft gasifier. International Journal of Green Energy 13 (5):513–20. doi:10.1080/15435075.2014.966266.
  • Arif, Z., Husaini, N. Ali, S. Muryati, and -. Husaini. 2023. Investigation of mechanical properties and thermal analysis of bagasse fiber reinforced composite polymer foam. International Journal on Advanced Science, Engineering and Information Technology 13 (4):1210–16. doi:10.18517/ijaseit.13.4.17910.
  • Ascher, S., X. Wang, I. Watson, W. Sloan, and S. You. 2022. Interpretable machine learning to model biomass and waste gasification. Bioresource Technology 364:128062. doi:10.1016/j.biortech.2022.128062.
  • Aslam, N., I. U. Khan, R. F. Aljishi, Z. M. Alnamer, Z. M. Alzawad, F. A. Almomen, and F. A. Alramadan. 2022. Explainable computational intelligence model for antepartum fetal monitoring to predict the risk of IUGR. Electronics 11 (4):593. doi:10.3390/electronics11040593.
  • Aslam, N., I. U. Khan, S. Mirza, A. AlOwayed, F. M. Anis, R. M. Aljuaid, and R. Baageel. 2022. Interpretable machine learning models for malicious domains detection using explainable artificial intelligence (XAI). Sustainability 14 (12):7375. doi:10.3390/su14127375.
  • Ateş, F., and B. Yaşar. 2023. Utilization of date palm stones for bio-oil and char production using flash and fast pyrolysis. Biomass Conversion and Biorefinery 13 (4):2907–19. doi:10.1007/s13399-021-01350-y.
  • Ayulani, I. D., A. M. Yunawan, T. Prihutaminingsih, D. Sarwinda, G. Ardaneswari, and B. D. Handari. 2023. Tree-based ensemble methods and their applications for predicting students’ academic performance. International Journal on Advanced Science, Engineering and Information Technology 13 (3):919–27. doi:10.18517/ijaseit.13.3.16880.
  • Bandh, S. A., F. A. Malla, I. Qayoom, H. Mohi-Ud-Din, A. K. Butt, A. Altaf, S. A. Wani, R. Betts, T. H. Truong, N. D. K. Pham, et al. 2023. Importance of blue carbon in mitigating climate change and plastic/microplastic pollution and promoting circular economy. Sustainability 15 (3):2682. doi:10.3390/su15032682.
  • Barto, A. G., R. S. Sutton, and C. W. Anderson. 2020. Looking back on the actor–critic architecture. IEEE Transactions on Systems, Man, and Cybernetics: Systems 51 (1):40–50. doi:10.1109/TSMC.2020.3041775.
  • Basu, P. 2013. Analytical techniques, in: Biomass gasification, pyrolysis and torrefaction 439–55. Elsevier. doi:10.1016/B978-0-12-396488-5.00013-7.
  • Biswas, P. P., W.-H. Chen, S. S. Lam, Y.-K. Park, J.-S. Chang, and A. T. Hoang. 2024. A comprehensive study of artificial neural network for sensitivity analysis and hazardous elements sorption predictions via bone char for wastewater treatment. Journal of Hazardous Materials Advances 465:133154. doi:10.1016/j.jhazmat.2023.133154.
  • Braghiroli, F. L., and L. Passarini. 2020. Valorization of biomass residues from forest operations and wood manufacturing presents a wide range of sustainable and innovative possibilities. Current Forestry Reports 6 (2):172–83. doi:10.1007/s40725-020-00112-9.
  • Brilman, D. W. F., N. Drabik, and M. Wądrzyk. 2017. Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp. Biomass Conversion and Biorefinery 7 (4):445–54. doi:10.1007/s13399-017-0241-2.
  • Bülte, C., M. Kleinebrahm, H. Ü. Yilmaz, and J. Gómez-Romero. 2023. Multivariate time series imputation for energy data using neural networks. Energy and AI 13:100239. doi:10.1016/j.egyai.2023.100239.
  • Bushra, B., and N. Remya. 2020. Biochar from pyrolysis of rice husk biomass—characteristics, modification and environmental application. Biomass Conversion and Biorefinery 14 (5):5759–70. doi:10.1007/s13399-020-01092-3.
  • Cerone, N., F. Zimbardi, A. Villone, N. Strjiugas, and E. G. Kiyikci. 2016. Gasification of wood and torrefied wood with air, oxygen, and steam in a fixed-bed Pilot plant. Energy & Fuels 30 (5):4034–43. doi:10.1021/acs.energyfuels.6b00126.
  • Chaturvedi, S., S. V. Singh, V. C. Dhyani, K. Govindaraju, R. Vinu, and S. Mandal. 2023. Characterization, bioenergy value, and thermal stability of biochars derived from diverse agriculture and forestry lignocellulosic wastes. Biomass Conversion and Biorefinery 13 (2):879–92. doi:10.1007/s13399-020-01239-2.
  • Chaturvedi, K., A. Singhwane, M. Dhangar, M. Mili, N. Gorhae, A. Naik, N. Prashant, A. K. Srivastava, and S. Verma. 2023. Bamboo for producing charcoal and biochar for versatile applications. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-03715-3.
  • Chellapandi, P., and S. Saranya. 2023. Biogas starter from genome-scale data for methanogenic bioprocessing of protein waste. Systems Microbiology and Biomanufacturing. doi:10.1007/s43393-023-00191-2.
  • Chen, W.-H., A. T. Hoang, S. Nižetić, A. Pandey, C. K. Cheng, R. Luque, H. C. Ong, S. Thomas, and X. P. Nguyen. 2022. Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Safety and Environmental Protection 160:704–33. doi:10.1016/j.psep.2022.02.061.
  • Chen, W.-H., K.-Y. Ho, R. Aniza, A. K. Sharma, A. Saravanakumar, and A. T. Hoang. 2024. A review of noncatalytic and catalytic pyrolysis and co-pyrolysis products from lignocellulosic and algal biomass using py-GC/MS. Journal of Industrial & Engineering Chemistry. doi:10.1016/j.jiec.2024.01.020.
  • Chen, W.-H., B.-J. Lin, Y.-Y. Lin, Y.-S. Chu, A. T. Ubando, P. L. Show, H. C. Ong, J.-S. Chang, S.-H. Ho, A. B. Culaba, et al. 2021. Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science 82:100887. doi:10.1016/j.pecs.2020.100887.
  • Chen, W.-H., K.-M. Lu, S.-H. Liu, C.-M. Tsai, W.-J. Lee, and T.-C. Lin. 2013. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities. Bioresource Technology 146:152–60. doi:10.1016/j.biortech.2013.07.064.
  • Chen, C., Z. Wang, Y. Ge, R. Liang, D. Hou, J. Tao, B. Yan, W. Zheng, R. Velichkova, and G. Chen. 2023. Characteristics prediction of hydrothermal biochar using data enhanced interpretable machine learning. Bioresource Technology 377:128893. doi:10.1016/j.biortech.2023.128893.
  • Cho, S., and C. S. Park. 2022. Rule reduction for control of a building cooling system using explainable AI. Journal of Building Performance Simulation 15 (6):832–47. doi:10.1080/19401493.2022.2103586.
  • Chun, Y., S. K. Lee, H. Y. Yoo, and S. W. Kim. 2021. Recent advancements in biochar production according to feedstock classification, pyrolysis conditions, and applications: A review. Bio Resources 16 (3):6512–47. doi:10.15376/BIORES.16.3.CHUN.
  • Confalonieri, R., L. Coba, B. Wagner, and T. R. Besold. 2021. A historical perspective of explainable artificial intelligence. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery 11 (1):e1391. doi:10.1002/widm.1391.
  • Cortiñas-Lorenzo, K., and G. Lacey. 2024. Toward explainable affective computing: A review. IEEE Transactions on Neural Networks and Learning Systems 1–0. doi:10.1109/TNNLS.2023.3270027.
  • Creswell, A., T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath. 2018. Generative adversarial networks: An overview. IEEE Signal Processing Magazine 35 (1):53–65. doi:10.1109/MSP.2017.2765202.
  • Crombie, K., and O. Mašek. 2015. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy 7 (2):349–61. doi:10.1111/gcbb.12137.
  • Cutler, A., D. R. Cutler, and J. R. Stevens. 2012. Random forests. In: Zhang, C., Ma, Y. (Eds.), Ensemble Machine Learning (pp. 157–75). Springer, New York, NY. doi:10.1007/978-1-4419-9326-7_5.
  • Czerwińska, K., M. Śliz, and M. Wilk. 2022. Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review. Renewable and Sustainable Energy Reviews 154:111873. doi:10.1016/j.rser.2021.111873.
  • Dadhich, A. 2022. Engineered biochar as feed supplement and other husbandry applications. In Engineered biochar, 319–29. Singapore: Springer Nature Singapore. doi:10.1007/978-981-19-2488-0_17.
  • Dai, Q., Q. Liu, X. Zhang, L. Cao, B. Hu, J. Shao, F. Ding, X. Guo, and B. Gao. 2022. Synergetic effect of co-pyrolysis of sewage sludge and lignin on biochar production and adsorption of methylene blue. Fuel 324:124587. doi:10.1016/j.fuel.2022.124587.
  • Dai, L., Z. Zeng, X. Tian, L. Jiang, Z. Yu, Q. Wu, Y. Wang, Y. Liu, and R. Ruan. 2019. Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over fe modified bio-char catalyst. Journal of Analytical and Applied Pyrolysis 143:104691. doi:10.1016/j.jaap.2019.104691.
  • Damu, D. N. A., B. S. C. Wong, J. Y. Chai, C. Y. K. Wong, H. Nabipour Afrouzi, and A. Hassan. 2023. A review of renewable energy development in ASEAN, policies, environmental and economic impact. Future Sustainability 1 (1):13–22. doi:10.55670/fpll.fusus.1.1.2.
  • Dang, B.-T., R. Ramaraj, K.-P.-H. Huynh, M.-V. Le, I. Tomoaki, T.-T. Pham, V. Hoang Luan, P. Thi Le Na, and D. P. H. Tran. 2023. Current application of seaweed waste for composting and biochar: A review. Bioresource Technology 375:128830. doi:10.1016/j.biortech.2023.128830.
  • Danish, M., and T. Ahmad. 2018. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews 87:1–21. doi:10.1016/j.rser.2018.02.003.
  • Darmawan, H., M. Yuliana, and M. Z. S. Hadi. 2023. GRU and XGBoost performance with hyperparameter tuning using GridSearchCV and bayesian optimization on an IoT-based weather prediction system. International Journal on Advanced Science, Engineering and Information Technology 13 (3):851–62. doi:10.18517/ijaseit.13.3.18377.
  • Deb, U., N. Bhuyan, S. S. Bhattacharya, and R. Kataki. 2019. Agro-residues and weed biomass as a source bioenergy: Implications for sustainable management and valorization of low-value biowastes. International Journal of Renewable Energy Development 8 (3):243–51. doi:10.14710/ijred.8.3.243-251.
  • Desniorita, N., N. Nazir, K. Novelina, and K. Sayuti. 2019. Sustainable design of biorefinery processes on cocoa pod: Optimization of pectin extraction process with variations of pH, temperature, and time. International Journal on Advanced Science, Engineering and Information Technology 9 (6):2104–13. doi:10.18517/ijaseit.9.6.10670.
  • Ding, Y., J. Zhang, Q. He, B. Huang, and S. Mao. 2019. The application and validity of various reaction kinetic models on woody biomass pyrolysis. Energy 179:784–91. doi:10.1016/j.energy.2019.05.021.
  • Dissanayake, P. D., S. W. Choi, A. D. Igalavithana, X. Yang, D. C. W. Tsang, C.-H. Wang, H. W. Kua, K. B. Lee, and Y. S. Ok. 2020. Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication. Renewable and Sustainable Energy Reviews 124:109785. doi:10.1016/j.rser.2020.109785.
  • Doddapaneni, T. R. K. C., L. Pärn, and T. Kikas. 2022. Torrefaction of Pulp Industry Sludge to enhance its fuel characteristics. Energies 15 (17):6175. doi:10.3390/en15176175.
  • Duc Bui, V., H. Phuong Vu, H. Phuong Nguyen, X. Quang Duong, D. Tuyen Nguyen, M. Tuan Pham, and P. Quy Phong Nguyen. 2023. Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy. Sustainable Energy Technologies and Assessments 55:102991. doi:10.1016/j.seta.2022.102991.
  • Emadi, B., K. L. Iroba, and L. G. Tabil. 2017. Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass. Applied Energy 198:312–19. doi:10.1016/j.apenergy.2016.12.027.
  • Ercan, B., K. Alper, S. Ucar, and S. Karagoz. 2023. Comparative studies of hydrochars and biochars produced from lignocellulosic biomass via hydrothermal carbonization, torrefaction and pyrolysis. Journal of the Energy Institute 109:101298. doi:10.1016/j.joei.2023.101298.
  • Escalante, J., W.-H. Chen, M. Tabatabaei, A. T. Hoang, E. E. Kwon, K.-Y. Andrew Lin, and A. Saravanakumar. 2022. Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach. Renewable and Sustainable Energy Reviews 169:112914. doi:10.1016/j.rser.2022.112914.
  • Ethaib, S., R. Omar, S. M. M. Kamal, D. R. Awang Biak, and S. L. Zubaidi. 2020. Microwave-assisted pyrolysis of biomass waste: A mini review. Processes 8 (9):1190. doi:10.3390/pr8091190.
  • Farzad, S., M. A. Mandegari, and J. F. Görgens. 2016. A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Research Journal 3 (4):483–95. doi:10.18331/BRJ2016.3.4.3.
  • Fetriyuna, F., S. M. A. Letsoin, I. R. A. P. Jati, R. C. Purwestri, B. Setiawan, N. N. Wirawan, D. Herak, M. Hájek, S. Nurhasanah, and T. Yuliana. 2023. Potential of underutilized sago for bioenergy uses. International Journal on Advanced Science, Engineering and Information Technology 14 (1):144–50. doi:10.18517/ijaseit.14.1.19202.
  • Föhr, J., T. Ranta, J. Suikki, and H. Soininen. 2017. Manufacturing of torrefied pellets without a binder from different raw wood materials in the pilot plant. Wood Research 62:481–94.
  • Foong, S. Y., N. S. Abdul Latiff, R. K. Liew, P. N. Y. Yek, and S. S. Lam. 2020. Production of biochar for potential catalytic and energy applications via microwave vacuum pyrolysis conversion of cassava stem. Materials Science for Energy Technologies 3:728–33. doi:10.1016/j.mset.2020.08.002.
  • Fryer, D., I. Strumke, and H. Nguyen. 2021. Shapley values for feature selection: The good, the bad, and the axioms. IEEE Access 9:144352–60. doi:10.1109/ACCESS.2021.3119110.
  • Fseha, Y. H., J. Shaheen, and B. Sizirici. 2023. Phenol contaminated municipal wastewater treatment using date palm frond biochar: Optimization using response surface methodology. Emerging Contaminants 9 (1):100202. doi:10.1016/j.emcon.2022.100202.
  • Funke, A., and F. Ziegler. 2010. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining 4 (2):160–77. doi:10.1002/bbb.198.
  • Gabhane, J. W., V. P. Bhange, P. D. Patil, S. T. Bankar, and S. Kumar. 2020. Recent trends in biochar production methods and its application as a soil health conditioner: A review. SN Applied Sciences 2 (7):1–21. doi:10.1007/s42452-020-3121-5.
  • Gabhi, R., L. Basile, D. W. Kirk, M. Giorcelli, A. Tagliaferro, and C. Q. Jia. 2020. Electrical conductivity of wood biochar monoliths and its dependence on pyrolysis temperature. Biochar 2 (3):369–78. doi:10.1007/s42773-020-00056-0.
  • Gan, Y. Y., H. C. Ong, T. C. Ling, W.-H. Chen, and C. T. Chong. 2019. Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production. Energy 170:367–74. doi:10.1016/j.energy.2018.12.026.
  • Gan, Z., X. Zhuang, K. Cen, Y. Ba, J. Zhou, and D. Chen. 2022. Co-pyrolysis of municipal solid waste and rice husk gasification tar to prepare biochar: An optimization study using response surface methodology. Fuel 330:125574. doi:10.1016/j.fuel.2022.125574.
  • Gao, P., Y. Liu, X. Huang, A. Abulaiti, and S. Yang. 2023. Effect of wet torrefaction on the physicochemical characteristics and gasification behavior of biochar. Industrial Crops and Products 197:116544. doi:10.1016/j.indcrop.2023.116544.
  • Geng, P., X. Xu, and T. Tarasiuk. 2020. State of charge estimation method for lithium-ion batteries in all-electric ships based on LSTM neural network. Polish Maritime Research 27 (3):100–08. doi:10.2478/pomr-2020-0051.
  • Gholamahmadi, B., S. Jeffery, O. Gonzalez-Pelayo, S. A. Prats, A. C. Bastos, J. J. Keizer, and F. G. A. Verheijen. 2023. Biochar impacts on runoff and soil erosion by water: A systematic global scale meta-analysis. Science of the Total Environment 871:161860. doi:10.1016/j.scitotenv.2023.161860.
  • González-Arias, J., M. E. Sánchez, J. Cara-Jiménez, F. M. Baena-Moreno, and Z. Zhang. 2022. Hydrothermal carbonization of biomass and waste: A review. Environmental Chemistry Letters 20 (1):211–21. doi:10.1007/s10311-021-01311-x.
  • Górniak, W., E. Popiela, A. Szuba-Trznadel, D. Konkol, and M. Korczyński. 2022. Smart feed additives for livestock. In Chojnacka, K., & Saeid, A (Eds.), Smart agrochemicals for sustainable agriculture, 103–38. London: Elsevier.
  • Güleç, F., A. Parthiban, G. C. Umenweke, U. Musa, O. Williams, Y. Mortezaei, H. Suk‐Oh, E. Lester, C. C. Ogbaga, B. Gunes, et al. 2023. Progress in lignocellulosic biomass valorization for biofuels and value-added chemical production in the EU a focus on thermochemical conversion processes. Biofuels, Bioproducts and Biorefining. doi:10.1002/bbb.2544.
  • Gunning, D., M. Stefik, J. Choi, T. Miller, S. Stumpf, and G.-Z. Yang. 2019. XAI—Explainable artificial intelligence. Science Robotics 4 (37):eaay7120. doi:10.1126/scirobotics.aay7120.
  • Gupta, R. K., M. Vashisht, A. Sidhu, R. K. Naresh, N. Dhingra, M. S. Sidhu, M. H. Siddiqui, S. Alamri, P. K. Singh, and M. A. Rahman. 2023. Optimisation of rice straw and acacia biochar doses in two soils for phosphorus availability. Acta Agriculturae Scandinavica, Section B Soil & Plant Science 73 (1):161–69. doi:10.1080/09064710.2023.2248998.
  • Hadiya, V., K. Popat, S. Vyas, S. Varjani, M. Vithanage, V. Kumar Gupta, A. Núñez Delgado, Y. Zhou, P. Loke Show, M. Bilal, et al. 2022. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. Bioresource Technology 355:127303. doi:10.1016/j.biortech.2022.127303.
  • Hai, A., G. Bharath, M. F. A. Patah, W. M. A. W. Daud, K. Rambabu, P. Show, and F. Banat. 2023. Machine learning models for the prediction of total yield and specific surface area of biochar derived from agricultural biomass by pyrolysis. Environmental Technology & Innovation 30:103071. doi:10.1016/j.eti.2023.103071.
  • Haider Jaffari, Z., H. Jeong, J. Shin, J. Kwak, C. Son, Y.-G. Lee, S. Kim, K. Chon, and K. Hwa Cho. 2023. Machine-learning-based prediction and optimization of emerging contaminants’ adsorption capacity on biochar materials. The Chemical Engineering Journal 466:143073. doi:10.1016/j.cej.2023.143073.
  • Hajimineh, R., and A. M. Moghani. 2023. The important factors of Saudi Arabian policymaking in renewable energy resources. Future Energy 2 (2):29–38. doi:10.55670/fpll.fuen.2.2.4.
  • Hansen, V., D. Müller-Stöver, J. Ahrenfeldt, J. K. Holm, U. B. Henriksen, and H. Hauggaard-Nielsen. 2015. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass and Bioenergy 72:300–08. doi:10.1016/j.biombioe.2014.10.013.
  • Haq, E. S., S. Setiadevi, E. M. Rini, D. Yusuf, and A. A. Aji. 2023. Investigating an enhanced approach for greenhouse climate control: Optimising cooling and heating systems. International Journal on Advanced Science, Engineering and Information Technology 13 (6):2388–96. doi:10.18517/ijaseit.13.6.19384.
  • Haq, Z. U., H. Ullah, M. N. A. Khan, S. Raza Naqvi, A. Ahad, and N. A. S. Amin. 2022. Comparative study of machine learning methods integrated with genetic algorithm and particle swarm optimization for bio-char yield prediction. Bioresource Technology 363:128008. doi:10.1016/j.biortech.2022.128008.
  • Hasibuan, S., H. Adiyatna, I. Widowati, and J. Kandasamy. 2020. Feasibility analysis of compact-mobile biomass pallet technology as renewable fuel for small and medium industries. International Journal on Advanced Science, Engineering and Information Technology 10 (6):2484–90. doi:10.18517/ijaseit.10.6.13775.
  • Hassija, V., V. Chamola, A. Mahapatra, A. Singal, D. Goel, K. Huang, S. Scardapane, I. Spinelli, M. Mahmud, and A. Hussain. 2024. Interpreting black-box models: A review on explainable artificial intelligence. Cognitive Computation 16 (1):45–74. doi:10.1007/s12559-023-10179-8.
  • He, Q., L. Ding, A. Raheem, Q. Guo, Y. Gong, and G. Yu. 2021. Kinetics comparison and insight into structure-performance correlation for leached biochar gasification. The Chemical Engineering Journal 417:129331. doi:10.1016/j.cej.2021.129331.
  • He, D.-C., Y.-L. Ma, Z.-Z. Li, C.-S. Zhong, Z.-B. Cheng, and J. Zhan. 2021. Crop rotation enhances agricultural sustainability: From an empirical evaluation of eco-economic benefits in rice production. Agriculture 11 (2):91. doi:10.3390/agriculture11020091.
  • He, M., Z. Xu, D. Hou, B. Gao, X. Cao, Y. S. Ok, J. Rinklebe, N. S. Bolan, and D. C. W. Tsang. 2022. Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth and Environment 3 (7):444–60. doi:10.1038/s43017-022-00306-8.
  • Hoang, A. T., J. L. Goldfarb, A. M. Foley, E. Lichtfouse, M. Kumar, L. Xiao, S. F. Ahmed, Z. Said, R. Luque, V. G. Bui, et al. 2022. Production of biochar from crop residues and its application for anaerobic digestion. Bioresource Technology 363:127970. doi:10.1016/j.biortech.2022.127970.
  • Hoang, A. T., Z. Huang, S. Nižetić, A. Pandey, X. P. Nguyen, R. Luque, H. C. Ong, Z. Said, T. H. Le, and V. V. Pham. 2022. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy 47 (7):4394–425. doi:10.1016/j.ijhydene.2021.11.091.
  • Hoang, A. T., X. P. Nguyen, A. T. Le, T. T. Huynh, and V. V. Pham. 2021. COVID-19 and the global shift progress to clean energy. Journal of Energy Resources Technology 143 (9). doi:10.1115/1.4050779.
  • Hoang, A. T., A. Pandey, E. Lichtfouse, V. G. Bui, I. Veza, H. L. Nguyen, and X. P. Nguyen. 2023. Green hydrogen economy: Prospects and policies in Vietnam. International Journal of Hydrogen Energy 48 (80):31049–62. doi:10.1016/j.ijhydene.2023.05.306.
  • Hoang, A. T., R. Sirohi, A. Pandey, S. Nižetić, S. S. Lam, W.-H. Chen, R. Luque, S. Thomas, M. Arıcı, and V. V. Pham. 2022. Biofuel production from microalgae: Challenges and chances. Phytochemistry Reviews 22 (4):1089–126. doi:10.1007/s11101-022-09819-y.
  • Hoang, A. T., P. S. Varbanov, S. Nižetić, R. Sirohi, A. Pandey, R. Luque, K. H. Ng, and V. V. Pham. 2022. Perspective review on municipal solid waste-to-energy route: Characteristics, management strategy, and role in circular economy. Journal of Cleaner Production 359:131897. doi:10.1016/j.jclepro.2022.131897.
  • Holzinger, A., A. Saranti, C. Molnar, P. Biecek, and W. Samek. 2022. Explainable AI methods-a brief overview. In Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, KR., Samek, W. (Eds.), International workshop on extending explainable AI beyond deep models and classifiers, 13–38. Springer, Cham. doi: 10.1007/978-3-031-04083-2_2.
  • Homdoung, N., N. Dussadee, K. Sasujit, T. Kiatsiriroat, and N. Tippayawong. 2019. Performance investigation of a gasifier and gas engine system operated on municipal solid waste briquettes. International Journal of Renewable Energy Development 8 (2):179–84. doi:10.14710/ijred.8.2.179-184.
  • Hosseini, S. E. 2022. Transition away from fossil fuels toward renewables: Lessons from Russia-Ukraine crisis. Future Energy 1 (1):2–5. doi:10.55670/fpll.fuen.1.1.8.
  • Huang, Y., Y. Wan, S. Liu, Y. Zhang, H. Ma, S. Zhang, and J. Zhou. 2019. A downdraft fixed-bed biomass gasification system with integrated products of electricity, heat, and Biochar: The key features and initial commercial performance. Energies 12 (15):2979. doi:10.3390/en12152979.
  • Huang, Z., and Y. Wu, 2022. A survey on explainable anomaly detection for industrial internet of things, in: 2022 IEEE Conference on Dependable and Secure Computing (DSC). IEEE, pp. 1–9. 10.1109/DSC54232.2022.9888874
  • Hu, J., Y. Song, J. Liu, F. Evrendilek, M. Buyukada, Y. Yan, and L. Li. 2020. Combustions of torrefaction-pretreated bamboo forest residues: Physicochemical properties, evolved gases, and kinetic mechanisms. Bioresource Technology 304:122960. doi:10.1016/j.biortech.2020.122960.
  • Idris, S. S., M. I. Zailan, N. Azron, and N. Abd Rahman. 2021. Sustainable green charcoal briquette from food waste via microwave pyrolysis technique: Influence of type and concentration of binders on chemical and physical characteristics. International Journal of Renewable Energy Development 10 (3):425–33. doi:10.14710/ijred.2021.33101.
  • Ihsan, A. F., Darmadi, S. Uttunggadewa, S. D. Rahmawati, I. Giovanni, S. N. Himawan, and -. Darmadi. 2023. Performance analysis of deep learning implementation in operational condition forecasting of a gas transmission pipeline network. International Journal on Advanced Science, Engineering and Information Technology 13 (4):1423–29. doi:10.18517/ijaseit.13.4.18250.
  • Jagadeesh, N., and B. Sundaram. 2023. Adsorption of pollutants from wastewater by Biochar: A review. Journal of Hazardous Materials Advances 9:100226. doi:10.1016/j.hazadv.2022.100226.
  • JamesR, A. M., W. Yuan, D. Wang, D. Wang, and A. Kumar. 2020. The effect of gasification conditions on the surface properties of biochar produced in a top-lit updraft gasifier. Applied Sciences 10 (2):688. doi:10.3390/app10020688.
  • Jeon, S., A. Farooq, I. H. Lee, D. Lee, M. W. Seo, S.-C. Jung, M. Hussain, M. A. Khan, B.-H. Jeon, S.-H. Jang, et al. 2024. Green conversion of wood plastic composites: A study on gasification with an activated bio-char catalyst. International Journal of Hydrogen Energy 54:96–106. doi:10.1016/j.ijhydene.2023.05.127.
  • Jose Mayans, J., J. A. Torrent-Bravo, and L. Lopéz. 2021. Energy use of Mediterranean forest biomass in sustainable public heating systems and its effects on climate change – case of study. International Journal of Renewable Energy Development 10 (2):229–38. doi:10.14710/ijred.2021.34276.
  • Jouis, G., H. Mouchère, F. Picarougne, and A. Hardouin. 2023. A methodology to compare XAI explanations on natural language processing. In Explainable deep learning AI, 191–216. Elsevier. doi:10.1016/B978-0-32-396098-4.00016-8.
  • Kalla, A., N. Mayilswamy, B. Kandasubramanian, and P. Mahajan- Tatpate. 2023. Biochar: A sustainable and an eco-friendly material for energy storage applications. International Journal of Green Energy 1–15. doi:10.1080/15435075.2023.2259973.
  • Karim, A. A., M. Kumar, E. Singh, A. Kumar, S. Kumar, A. Ray, and N. K. Dhal. 2022. Enrichment of primary macronutrients in biochar for sustainable agriculture: A review. Critical Reviews in Environmental Science and Technology 52 (9):1449–90. doi:10.1080/10643389.2020.1859271.
  • Kaur, R., A. Kumar, B. Biswas, B. B. Krishna, and T. Bhaskar. 2022. Investigations into pyrolytic behaviour of spent citronella waste: Slow and flash pyrolysis study. Bioresource Technology 366:128202. doi:10.1016/j.biortech.2022.128202.
  • Khalid, M. A., S. M. Hussain, S. Mahboob, K. A. Al-Ghanim, and M. N. Riaz. 2022. Biochar as a feed supplement for nutrient digestibility and growth performance of catla catla fingerlings. Saudi Journal of Biological Sciences 29 (12):103453. doi:10.1016/j.sjbs.2022.103453.
  • Khan, T. A., A. S. Saud, S. S. Jamari, M. H. A. Rahim, J.-W. Park, and H.-J. Kim. 2019. Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review. Biomass and Bioenergy 130:105384. doi:10.1016/j.biombioe.2019.105384.
  • Kim, S. 2024. Development of a TPACK educational program to enhance pre-service teachers ’ teaching expertise in artificial intelligence convergence education. International Journal on Advanced Science, Engineering and Information Technology 14 (1):1–9. doi:10.18517/ijaseit.14.1.19552.
  • Kim, Y., and Y. Kim. 2022. Explainable heat-related mortality with random forest and SHapley additive exPlanations (SHAP) models. Sustainable Cities and Society 79:103677. doi:10.1016/j.scs.2022.103677.
  • Kingsford, C., and S. L. Salzberg. 2008. What are decision trees? Nature Biotechnology 26 (9):1011–13. doi:10.1038/nbt0908-1011.
  • Kitrungloadjanaporn, P., L. Q. Sang, J. Pukdum, and T. Phengpom. 2023. Evaluating the role of operating temperature and residence time in the torrefaction of betel nutshells for solid fuel production. International Journal of Renewable Energy Development 12 (6):1113–22. doi:10.14710/ijred.2023.58228.
  • Kongnine, D. M., P. Kpelou, N. Attah, S. Kombate, E. Mouzou, G. Djeteli, and K. Napo. 2020. Energy resource of charcoals derived from some tropical fruits nuts shells. International Journal of Renewable Energy Development 9 (1):29–35. doi:10.14710/ijred.9.1.29-35.
  • Koshariya, A. K., M. S. Krishnan, S. Jaisankar, G. B. Loganathan, T. Sathish, Ü. Ağbulut, R. Saravanan, L. T. Tuan, and N. D. K. Pham. 2024. Waste to energy: An experimental study on hydrogen production from food waste gasification. International Journal of Hydrogen Energy 54:1–12. doi:10.1016/j.ijhydene.2023.05.221.
  • Kota, K. B., S. Shenbagaraj, P. K. Sharma, A. K. Sharma, P. K. Ghodke, and W.-H. Chen. 2022. Biomass torrefaction: An overview of process and technology assessment based on global readiness level. Fuel 324:124663. doi:10.1016/j.fuel.2022.124663.
  • Kover, A., D. Kraljić, R. Marinaro, and E. R. Rene. 2022. Processes for the valorization of food and agricultural wastes to value-added products: Recent practices and perspectives. Systems Microbiology and Biomanufacturing 2 (1):50–66. doi:10.1007/s43393-021-00042-y.
  • Kruse, J., B. Schafer, and D. Witthaut, 2021. Exploring deterministic frequency deviations with explainable AI, in: 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). IEEE, pp. 133–39. 10.1109/SmartGridComm51999.2021.9632335
  • Krysanova, K., A. Krylova, M. Kulikova, A. Kulikov, and O. Rusakova. 2022. Biochar characteristics produced via hydrothermal carbonization and torrefaction of peat and sawdust. Fuel 328:125220. doi:10.1016/j.fuel.2022.125220.
  • Kumar, N., and N. K. Aggarwal. 2024. A review on valorization, management, and applications of the hazardous weed parthenium hysterophorus. Systems Microbiology and Biomanufacturing. doi:10.1007/s43393-023-00226-8.
  • Kumar, A. N., J.-J. Yoon, G. Kumar, and S.-H. Kim. 2021. Biotechnological valorization of algal biomass: An overview. Systems Microbiology and Biomanufacturing 1 (2):131–41. doi:10.1007/s43393-020-00012-w.
  • Kuzlu, M., U. Cali, V. Sharma, and O. Guler. 2020. Gaining insight into solar photovoltaic power generation forecasting utilizing explainable artificial intelligence tools. IEEE Access 8:187814–23. doi:10.1109/ACCESS.2020.3031477.
  • Lee, K.-T., J.-Y. Tsai, A. T. Hoang, W.-H. Chen, D. S. Gunarathne, K.-Q. Tran, A. Selvarajoo, and V. Goodarzi. 2022. Energy-saving drying strategy of spent coffee grounds for co-firing fuel by adding biochar for carbon sequestration to approach net zero. Fuel 326:124984. doi:10.1016/j.fuel.2022.124984.
  • Legan, M., A. Ž. Gotvajn, and K. Zupan. 2022. Potential of biochar use in building materials. Journal of Environmental Management 309:114704. doi:10.1016/j.jenvman.2022.114704.
  • Lemeshow, S., R. X. Sturdivant, and D. W. Hosmer Jr. 2013. Applied logistic regression. Hoboken, New Jersey, United States: John Wiley & Sons.
  • Le, A. T., A. Pandey, R. Sirohi, P. Sharma, W.-H. Chen, N. D. K. Pham, V. D. Tran, X. P. Nguyen, and A. T. Hoang. 2023. Precise prediction of biochar yield and proximate analysis by modern machine learning and SHapley additive exPlanations. Energy & Fuels 37 (22):17310–27. doi:10.1021/acs.energyfuels.3c02868.
  • Le, T. T., J. C. Priya, H. C. Le, N. V. L. Le, T. B. N. Nguyen, and D. N. Cao. 2024. Harnessing artificial intelligence for data-driven energy predictive analytics: A systematic survey towards enhancing sustainability. International Journal of Renewable Energy Development 13 (2). doi:10.61435/ijred.2024.60119.
  • Li, X., Y. Chen, W. Tan, P. Chen, H. Yang, and H. Chen. 2023. Prediction of char yield and nitrogen fixation rate from pyrolysis of sewage sludge based on machine learning. Journal of Analytical and Applied Pyrolysis 171:105948. doi:10.1016/j.jaap.2023.105948.
  • Li, X., Z. Huang, S. Shao, and Y. Cai. 2024. Machine learning prediction of physical properties and nitrogen content of porous carbon from agricultural wastes: Effects of activation and doping process. Fuel 356:129623. doi:10.1016/j.fuel.2023.129623.
  • Li, C., D. Li, Y. Jiang, L. Zhang, Y. Huang, B. Li, S. Wang, and X. Hu. 2023. Biomass-derived volatiles for activation of the biochar of same origin. Fuel 332:126034. doi:10.1016/j.fuel.2022.126034.
  • Li, X., and F. Maréchal. 2023. Deep excavation of the impact from endogenous and exogenous uncertainties on long-term energy planning. Energy and AI 11:100219. doi:10.1016/j.egyai.2022.100219.
  • Linardatos, P., V. Papastefanopoulos, and S. Kotsiantis. 2020. Explainable ai: A review of machine learning interpretability methods. Entropy 23 (1):18. doi:10.3390/e23010018.
  • Li, J., L. Pan, M. Suvarna, Y. W. Tong, and X. Wang. 2020. Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning. Applied Energy 269:115166. doi:10.1016/j.apenergy.2020.115166.
  • Li, X., B. Peng, Q. Liu, and H. Zhang. 2022. Microwave pyrolysis coupled with conventional pre-pyrolysis of the stalk for syngas and biochar. Bioresource Technology 348:126745. doi:10.1016/j.biortech.2022.126745.
  • Li, C., and K. Suzuki. 2009. Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renewable and Sustainable Energy Reviews 13 (3):594–604. doi:10.1016/j.rser.2008.01.009.
  • Liu, J., H. Fu, G. Zhou, Z. Guo, B. Hu, Y. Li, X. Jiang, and Q. Lu. 2023. Preparation of aromatic hydrocarbons from fast pyrolysis of waste medical mask catalyzed by modified HZSM-5. Journal of Analytical and Applied Pyrolysis 169:105797. doi:10.1016/j.jaap.2022.105797.
  • Liu, J., G. Liu, W. Zhang, Z. Li, F. Xing, and L. Tang. 2022. Application potential analysis of biochar as a carbon capture material in cementitious composites: A review. Construction and Building Materials 350:128715. doi:10.1016/j.conbuildmat.2022.128715.
  • Liu, S.-C., and W.-T. Tsai. 2016. Thermochemical characteristics of dairy manure and its derived biochars from a fixed-bed pyrolysis. International Journal of Green Energy 13 (10):963–68. doi:10.1080/15435075.2015.1087851.
  • Liu, Z., Z. Xu, L. Xu, F. Buyong, T. C. Chay, Z. Li, Y. Cai, B. Hu, Y. Zhu, and X. Wang. 2022. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Research 1 (1):8. doi:10.1007/s44246-022-00007-3.
  • Liu, Q., G. Zhang, J. Yu, G. Kong, T. Cao, G. Ji, X. Zhang, and L. Han. 2024. Machine learning-aided hydrothermal carbonization of biomass for coal-like hydrochar production: Parameters optimization and experimental verification. Bioresource Technology 393:130073. doi:10.1016/j.biortech.2023.130073.
  • Li, M., and M. Wilkins. 2021. Lignin bioconversion into valuable products: fractionation, depolymerization, aromatic compound conversion, and bioproduct formation. Systems Microbiology and Biomanufacturing 1 (2):166–85. doi:10.1007/s43393-020-00016-6.
  • Lu, H., Y. Liu, A. Chinnathambi, H. S. Almoallim, G. K. Jhanani, K. Brindhadevi, P. Boomadevi, and C. Xia. 2024. Production and utilization of the chlorella vulgaris microalgae biochar as the fuel pellets combined with mixed biomass. Fuel 355:129395. doi:10.1016/j.fuel.2023.129395.
  • Luo, Y., Z. Li, H. Xu, X. Xu, H. Qiu, X. Cao, and L. Zhao. 2022. Development of phosphorus composite biochar for simultaneous enhanced carbon sink and heavy metal immobilization in soil. Science of the Total Environment 831:154845. doi:10.1016/j.scitotenv.2022.154845.
  • Luong, T., H. Pham, and C. D. Manning, 2015. Effective approaches to attention-based neural machine translation, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 1412–21. 10.18653/v1/D15-1166
  • Luo, L., J. Wang, J. Lv, Z. Liu, T. Sun, Y. Yang, and Y.-G. Zhu. 2023. Carbon sequestration strategies in soil using biochar: Advances, challenges, and opportunities. Environmental Science & Technology 57 (31):11357–72. doi:10.1021/acs.est.3c02620.
  • Maletić, S., M. K. Isakovski, G. Sigmund, T. Hofmann, T. Hüffer, J. Beljin, and S. Rončević. 2022. Comparing biochar and hydrochar for reducing the risk of organic contaminants in polluted river sediments used for growing energy crops. Science of the Total Environment 843:157122. doi:10.1016/j.scitotenv.2022.157122.
  • Mamvura, T. A., and G. Danha. 2020. Biomass torrefaction as an emerging technology to aid in energy production. Heliyon 6 (3):e03531. doi:10.1016/j.heliyon.2020.e03531.
  • Man, X., and E. P. Chan. 2021. The best way to select features? Comparing MDA, LIME, and SHAP. The Journal of Financial Data Science 3 (1):127–39. doi:10.3905/jfds.2020.1.047.
  • Man, K. Y., K. L. Chow, Y. B. Man, W. Y. Mo, and M. H. Wong. 2021. Use of biochar as feed supplements for animal farming. Critical Reviews in Environmental Science and Technology 51 (2):187–217. doi:10.1080/10643389.2020.1721980.
  • Mari Selvam, S., and P. Balasubramanian. 2023. Influence of biomass composition and microwave pyrolysis conditions on biochar yield and its properties: A machine learning approach. BioEnergy Res 16 (1):138–50. doi:10.1007/s12155-022-10447-9.
  • Marousek, J., O. Strunecky, R. Vaníčková, E. Midelashvili, and B. Minofar. 2023. Techno-economic considerations on latest trends in biowaste valuation. Systems Microbiology and Biomanufacturing. doi:10.1007/s43393-023-00216-w.
  • Md Said, M. S., A. A. Azni, W. A. Wan Ab Karim Ghani, A. Idris, M. F. Z. Ja’afar, and M. A. Mohd Salleh. 2022. Production of biochar from microwave pyrolysis of empty fruit bunch in an alumina susceptor. Energy 240:122710. doi:10.1016/j.energy.2021.122710.
  • Meyer, S., B. Glaser, and P. Quicker. 2011. Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environmental Science & Technology 45 (22):9473–83. doi:10.1021/es201792c.
  • Minh Loy, A. C., S. Yusup, B. L. Fui Chin, B. Shen How, H. Y. Lim, A. Borhan, Y. H. Chan, Y. H. Chan, A. Borhan, H. Y. Lim, et al. 2020. Optimization study of syngas production from catalytic air gasification of Rice Husk. International Journal on Advanced Science, Engineering and Information Technology 10 (5):1784–91. doi:10.18517/ijaseit.10.5.9906.
  • Mishra, R. K., and K. Mohanty. 2023. A review of the next-generation biochar production from waste biomass for material applications. Science of the Total Environment 904:167171. doi:10.1016/j.scitotenv.2023.167171.
  • Mistry, A. N., G. Upendar, S. Singh, J. Chakrabarty, G. Bandyopadhyay, K. C. Ghanta, and S. Dutta. 2020. Sequestration of CO 2 using microorganisms and evaluation of their potential to synthesize biomolecules. Sep. Separation Science and Technology 55 (2):332–45. doi:10.1080/01496395.2019.1577453.
  • Mohamed Nazari, M., C. Pooi San, and N. Amira Atan. 2019. Combustion performance of biomass composite briquette from rice husk and banana residue. International Journal on Advanced Science, Engineering and Information Technology 9 (2):455–60. doi:10.18517/ijaseit.9.2.2408.
  • Mohan, D., C. U. Pittman Jr, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels 20 (3):848–89. doi:10.1021/ef0502397.
  • Montgomery, D. C., E. A. Peck, and G. G. Vining. 2021. Introduction to linear regression analysis. Hoboken, New Jersey, United States: John Wiley & Sons.
  • Muresan, M., C.-C. Cormos, and P.-S. Agachi. 2013. Techno-economical assessment of coal and biomass gasification-based hydrogen production supply chain system. Transactions of the Institution of Chemical Engineers 91 (8):1527–41. doi:10.1016/j.cherd.2013.02.018.
  • Naghavi, R., M. A. Abdoli, A. Karbasi, and M. Adl. 2020. Improving the quantity and quality of biogas production in Tehran anaerobic digestion power plant by application of materials recirculation technique. International Journal of Renewable Energy Development 9 (2):167–75. doi:10.14710/ijred.9.2.167-175.
  • Nallaselvam, T., S. Rajamohan, B. Kalaiarasu, and A. T. Hoang. 2023. High efficient COVID-19 waste co-pyrolysis char/TiO2 nanocomposite for photocatalytic reduction of Cr(VI) under visible light. Environmental Science and Pollution Research 30 (43):97178–94. doi:10.1007/s11356-023-29281-3.
  • Namdeo, S., V. C. Srivastava, and P. Mohanty. 2023. Machine learning implemented exploration of the adsorption mechanism of carbon dioxide onto porous carbons. Journal of Colloid and Interface Science 647:174–87. doi:10.1016/j.jcis.2023.05.052.
  • Narde, S. R., and N. Remya. 2022. Biochar production from agricultural biomass through microwave-assisted pyrolysis: Predictive modelling and experimental validation of biochar yield. Environment, Development and Sustainability 24 (9):11089–102. doi:10.1007/s10668-021-01898-9.
  • Negi, S., G. Jaswal, K. Dass, K. Mazumder, S. Elumalai, and J. K. Roy. 2020. Torrefaction: A sustainable method for transforming of agri-wastes to high energy density solids (biocoal). Reviews in Environmental Science and Bio/technology 19 (2):463–88. doi:10.1007/s11157-020-09532-2.
  • Neha, S., and N. Remya. 2022. Co-production of biooil and biochar from microwave co-pyrolysis of food-waste and plastic using recycled biochar as microwave susceptor. Sustainable Energy Technologies and Assessments 54:102892. doi:10.1016/j.seta.2022.102892.
  • Nguyen, V. G., X. Q. Duong, L. H. Nguyen, P. Q. P. Nguyen, J. C. Priya, T. H. Truong, H. C. Le, N. D. K. Pham, and X. P. Nguyen. 2023. An extensive investigation on leveraging machine learning techniques for high-precision predictive modeling of CO 2 emission. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (3):9149–77. doi:10.1080/15567036.2023.2231898.
  • Nguyen, X. P., A. T. Hoang, A. I. Ölçer, and T. T. Huynh. 2021. Record decline in global CO 2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–4. doi:10.1080/15567036.2021.1879969.
  • Nguyen, T. B. N., and N. V. L. Le. 2023. Biomass resources and thermal conversion biomass to biofuel for cleaner energy: A review. Journal of Emerging Science and Engineering 1 (1):6–13. doi:10.61435/jese.2023.2.
  • Nguyen, V. G., T. X. Nguyen-Thi, P. Q. Phong Nguyen, V. D. Tran, Ü. Ağbulut, L. H. Nguyen, D. Balasubramanian, W. Tarelko, S. A. Bandh, and N. D. Khoa Pham. 2023. Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification. International Journal of Hydrogen Energy 54:127–60. doi:10.1016/j.ijhydene.2023.05.049.
  • Nguyen, V. G., S. Rajamohan, K. Rudzki, J. Kozak, P. Sharma, N. D. K. Pham, P. Q. P. Nguyen, and P. N. Xuan. 2023. Using artificial neural networks for predicting ship fuel consumption. Polish Maritime Research 30 (2):39–60. doi:10.2478/pomr-2023-0020.
  • Nguyen, V. G., P. Sharma, Ü. Ağbulut, H. S. Le, V. D. Tran, and D. N. Cao. 2023. Precise prognostics of biochar yield from various biomass sources by Bayesian approach with supervised machine learning and ensemble methods. International Journal of Green Energy 1–25. doi:10.1080/15435075.2023.2297776.
  • Nguyen, V. G., P. Sharma, Ü. Ağbulut, H. S. Le, T. H. Truong, M. Dzida, M. H. Tran, H. C. Le, and V. D. Tran. 2024. Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy. Biofuels, Bioproducts and Biorefining. doi:10.1002/bbb.2596.
  • Nighojkar, A., S. Pandey, M. Naebe, B. Kandasubramanian, W. W. Soboyejo, A. Plappally, and X. Wang. 2023. Using machine learning to predict the efficiency of biochar in pesticide remediation. npj sustain. Agric 1:1. doi:10.1038/s44264-023-00001-1.
  • Niu, Y., Y. Lv, Y. Lei, S. Liu, Y. Liang, D. Wang, and S. Hui. 2019. Biomass torrefaction: Properties, applications, challenges, and economy. Renewable and Sustainable Energy Reviews 115:109395. doi:10.1016/j.rser.2019.109395.
  • Nizamuddin, S., H. A. Baloch, G. J. Griffin, N. M. Mubarak, A. W. Bhutto, R. Abro, S. A. Mazari, and B. S. Ali. 2017. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renewable and Sustainable Energy Reviews 73:1289–99. doi:10.1016/j.rser.2016.12.122.
  • Nor, A. K. M., S. R. Pedapati, M. Muhammad, and V. Leiva. 2021. Overview of explainable artificial intelligence for prognostic and health management of industrial assets based on preferred reporting items for systematic reviews and meta-analyses. Sensors 21 (23):8020. doi:10.3390/s21238020.
  • Notovich, A., H. Chalutz-Ben Gal, and I. Ben-Gal. 2023. Explainable artificial intelligence (XAI): Motivation, terminology, and taxonomy, in: Machine learning for data science handbook, 971–85. Cham: Springer International Publishing. doi:10.1007/978-3-031-24628-9_41.
  • Novotný, M., M. Marković, J. Raček, M. Šipka, T. Chorazy, I. Tošić, and P. Hlavínek. 2023. The use of biochar made from biomass and biosolids as a substrate for green infrastructure: A review. Sustainable Chemistry and Pharmacy 32:100999. doi:10.1016/j.scp.2023.100999.
  • Palumbo, A. W., C. J. Bartel, J. C. Sorli, and A. W. Weimer. 2019. Characterization of products derived from the high temperature flash pyrolysis of microalgae and rice hulls. Chemical Engineering Science 196:527–37. doi:10.1016/j.ces.2018.11.029.
  • Pardo, R., L. Taboada-Ruiz, E. Fuente, B. Ruiz, M. Díaz-Somoano, L. F. Calvo, and S. Paniagua. 2023. Exploring the potential of conventional and flash pyrolysis methods for the valorisation of grape seed and chestnut shell biomass from agri-food industry waste. Biomass and Bioenergy 177:106942. doi:10.1016/j.biombioe.2023.106942.
  • Park, J., W. H. Lee, K. T. Kim, C. Y. Park, S. Lee, and T.-Y. Heo. 2022. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Science of the Total Environment 832:155070. doi:10.1016/j.scitotenv.2022.155070.
  • Payrovnaziri, S. N., Z. Chen, P. Rengifo-Moreno, T. Miller, J. Bian, J. H. Chen, X. Liu, and Z. He. 2020. Explainable artificial intelligence models using real-world electronic health record data: A systematic scoping review. Journal of the American Medical Informatics Association 27 (7):1173–85. doi:10.1093/jamia/ocaa053.
  • Peng, J., X. T. Bi, C. J. Lim, H. Peng, C. S. Kim, D. Jia, and H. Zuo. 2015. Sawdust as an effective binder for making torrefied pellets. Applied Energy 157:491–98. doi:10.1016/j.apenergy.2015.06.024.
  • Pertiwi, S., D. H. Wibowo, and S. Widodo. 2023. Deep learning model for identification of diseases on Strawberry (Fragaria sp.) plants. International Journal on Advanced Science, Engineering and Information Technology 13 (4):1342–48. doi:10.18517/ijaseit.13.4.19018.
  • Pilania, G. 2021. Machine learning in materials science: From explainable predictions to autonomous design. Computational Materials Science 193:110360. doi:10.1016/j.commatsci.2021.110360.
  • Potnuri, R., C. S. Rao, D. V. Surya, V. Sridevi, and A. Kulkarni. 2023. Two-step synthesis of biochar using torrefaction and microwave-assisted pyrolysis: Understanding the effects of torrefaction temperature and catalyst loading. Journal of Analytical and Applied Pyrolysis 175:106191. doi:10.1016/j.jaap.2023.106191.
  • Pradhan, P., and D. J. Sweeney. 2023. Machine learning application in slow pyrolysis of biomass to predict biochar yield and quality, in: 2023 Omaha, Nebraska July 9-12, 2023. St. Joseph, MI: American Society of Agricultural and Biological Engineers. doi:10.13031/aim.202300392.
  • Pravina Kamini, G., K. F. Tee, J. Gimbun, and S. C. Chin. 2023. Biochar in cementitious material—A review on physical, chemical, mechanical, and durability properties. AIMS Materials Science 10:405–25. doi:10.3934/matersci.2023022.
  • Qomariyah, N., A. Ella, S. Nurdin Ahmad, Y. Yusriani, M. Miftakhus Sholikin, T. Rachmanto Prihambodo, Y. Retnani, A. Jayanegara, E. Wina, and I. G. Permana. 2023. Dietary biochar as a feed additive for increasing livestock performance: A meta-analysis of in vitro and in vivo experiment. Czech Journal of Animal Science 68 (2):72–86. doi:10.17221/124/2022-CJAS.
  • Rahman, S. A., A. Meryandini, A. B. Juanssilfero, and Fahrurrozi. 2023. Cocoa pod husk (CPH) for biomass on bioethanol production. International Journal on Advanced Science, Engineering and Information Technology 13 (3):828–36. doi:10.18517/ijaseit.13.3.18794.
  • Rahman, M. M., S. B. Mostafiz, J. V. Paatero, and R. Lahdelma. 2014. Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing. Renewable and Sustainable Energy Reviews 29:108–19. doi:10.1016/j.rser.2013.08.092.
  • Rahma, D. U. Z., G. H. Nurahman, H. Hadiyanto, and R. A. Baihaqi. 2023. Production of high-antioxidant yoghurt using phycocyanin from microalgae spirulina sp. Journal of Emerging Science and Engineering 1 (2):36–43. doi:10.61435/jese.2023.9.
  • Rahma, F. N., C. Tamzysi, A. Hidayat, and M. A. Adnan. 2021. Investigation of process parameters influence on municipal solid waste gasification with CO2 capture via process simulation approach. International Journal of Renewable Energy Development 10 (1):1–10. doi:10.14710/ijred.2021.31982.
  • Reed, T. B. 1985. Principles and technology of biomass gasification. In Advances in solar energy, 125–74. Boston, MA: Springer US. doi:10.1007/978-1-4613-9951-3_3.
  • Ren, X., M. Shanb Ghazani, H. Zhu, W. Ao, H. Zhang, E. Moreside, J. Zhu, P. Yang, N. Zhong, and X. Bi. 2022. Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review. Applied Energy 315:118970. doi:10.1016/j.apenergy.2022.118970.
  • Ribeiro, J. M. C., R. Godina, J. C. D. O. Matias, and L. Nunes. 2018. Future perspectives of biomass torrefaction: Review of the current state-of-the-art and research development. Sustainability 10 (7):1–17. doi:10.3390/su10072323.
  • Roy, M., and K. Kundu. 2023. Production of biochar briquettes from torrefaction of pine needles and its quality analysis. Bioresource Technology Reports 22:101467. doi:10.1016/j.biteb.2023.101467.
  • Rudin, C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence 1 (5):206–15. doi:10.1038/s42256-019-0048-x.
  • Rumapea, H., M. Zarlis, S. Efendy, and P. Sihombing. 2024. Improving convective cloud classification with deep learning: The CC-Unet model. International Journal on Advanced Science, Engineering and Information Technology 14 (1):28–36. doi:10.18517/ijaseit.14.1.18658.
  • Ryo, M., B. Angelov, S. Mammola, J. M. Kass, B. M. Benito, and F. Hartig. 2021. Explainable artificial intelligence enhances the ecological interpretability of black‐box species distribution models. Ecography (Cop) 44 (2):199–205. doi:10.1111/ecog.05360.
  • Safarian, S. 2023. Performance analysis of sustainable technologies for biochar production: A comprehensive review. Energy Reports 9:4574–93. doi:10.1016/j.egyr.2023.03.111.
  • Salam, K. K., M. O. Aremu, E. O. Oke, K. A. Babatunde, T. D. Oluwole, S. O. Ibrahim, and A. B. Oke. 2023. Lignin extraction from sawdust: Optimization of experimental studies, computer-aided simulation and techno-economic analysis of scale-up process design with uncertainty quantification. Systems Microbiology and Biomanufacturing. doi:10.1007/s43393-023-00197-w.
  • Salema, A. A., and M. T. Afzal. 2015. Numerical simulation of heating behaviour in biomass bed and pellets under multimode microwave system. International Journal of Thermal Sciences 91:12–24. doi:10.1016/j.ijthermalsci.2015.01.003.
  • Saravanakumar, A., P. Vijayakumar, A. T. Hoang, E. E. Kwon, and W.-H. Chen. 2023. Thermochemical conversion of large-size woody biomass for carbon neutrality: Principles, applications, and issues. Bioresource Technology 370:128562. doi:10.1016/j.biortech.2022.128562.
  • Sarp, S., M. Kuzlu, U. Cali, O. Elma, and O. Guler, 2021. An interpretable solar photovoltaic power generation forecasting approach using an explainable artificial intelligence tool, in: 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, pp. 1–5. 10.1109/ISGT49243.2021.9372263
  • Sathya, A. B., A. Thirunavukkarasu, R. Nithya, A. Nandan, K. Sakthishobana, A. K. Kola, R. Sivashankar, H. A. Tuan, and B. Deepanraj. 2023. Microalgal biofuel production: Potential challenges and prospective research. Fuel 332:126199. doi:10.1016/j.fuel.2022.126199.
  • Schmidt, H.-P., N. Hagemann, K. Draper, and C. Kammann. 2019. The use of biochar in animal feeding. PeerJ 7:e7373. doi:10.7717/peerj.7373.
  • Senadheera, S. S., S. Gupta, H. W. Kua, D. Hou, S. Kim, D. C. W. Tsang, and Y. S. Ok. 2023. Application of biochar in concrete – a review. Cement and Concrete Composites 143:105204. doi:10.1016/j.cemconcomp.2023.105204.
  • Shanmuganathan, R., Q. H. Le, A. S. Aloufi, B. Gavurová, J. R. Deepak, E. Mosisa, and P. T. R. 2023. High efficiency lipid production, biochar yield and chlorophyll a content of Chlorella sp. microalgae exposed on sea water and TiO2 nanoparticles. Environmental Research 232:116263. doi:10.1016/j.envres.2023.116263.
  • Sharma, K. V., P. H. V. S. Talpa Sai, P. Sharma, P. K. Kanti, P. Bhramara, and S. Akilu. 2023. Prognostic modeling of polydisperse SiO2/Aqueous glycerol nanofluids’ thermophysical profile using an explainable artificial intelligence (XAI) approach. Engineering Applications of Artificial Intelligence 126:106967. doi:10.1016/j.engappai.2023.106967.
  • Sharma Timilsina, M., S. Sen, B. Uprety, V. B. Patel, P. Sharma, and P. N. Sheth. 2024. Prediction of HHV of fuel by machine learning algorithm: Interpretability analysis using shapley additive explanations (SHAP). Fuel 357:129573. doi:10.1016/j.fuel.2023.129573.
  • Shi, G., Y. Wu, T. Li, Q. Fu, and Y. Wei. 2022. Mid- and long-term effects of biochar on soil improvement and soil erosion control of sloping farmland in a black soil region, China. Journal of Environmental Management 320:115902. doi:10.1016/j.jenvman.2022.115902.
  • Siedt, M., A. Schäffer, K. E. C. Smith, M. Nabel, M. Roß-Nickoll, and J. T. van Dongen. 2021. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Science of the Total Environment 751:141607. doi:10.1016/j.scitotenv.2020.141607.
  • Sinaga, K. P., and M.-S. Yang. 2020. Unsupervised K-means clustering algorithm. IEEE Access 8:80716–27. doi:10.1109/ACCESS.2020.2988796.
  • Singhal, S. 2023. Biochar as a cost-effective and eco-friendly substitute for binder in concrete: A review. European Journal of Environmental and Civil Engineering 27 (2):984–1009. doi:10.1080/19648189.2022.2068658.
  • Singh Yadav, S. P., S. Bhandari, D. Bhatta, A. Poudel, S. Bhattarai, P. Yadav, N. Ghimire, P. Paudel, P. Paudel, J. Shrestha, et al. 2023. Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research 11:100498. doi:10.1016/j.jafr.2023.100498.
  • Sirico, A., P. Bernardi, C. Sciancalepore, F. Vecchi, A. Malcevschi, B. Belletti, and D. Milanese. 2021. Biochar from wood waste as additive for structural concrete. Construction and Building Materials 303:124500. doi:10.1016/j.conbuildmat.2021.124500.
  • Sirohi, R., V. Vivekanand, A. K. Pandey, A. Tarafdar, M. K. Awasthi, A. Shakya, S. H. Kim, S. J. Sim, H. A. Tuan, and A. Pandey. 2023. Emerging trends in role and significance of biochar in gaseous biofuels production. Environmental Technology and Innovation 30:103100. doi:10.1016/j.eti.2023.103100.
  • Sittisun, P., N. Tippayawong, and S. Shimpalee. 2019. Gasification of pelletized corn residues with oxygen enriched air and steam. International Journal of Renewable Energy Development 8 (3):215–24. doi:10.14710/ijred.8.3.215-224.
  • Situmeang, Y. P., I. D. N. Sudita, and M. Suarta. 2019. Manure utilization from cows, goats, and chickens as compost, biochar, and poschar in increasing the red chili yield. International Journal on Advanced Science, Engineering and Information Technology 9 (6):2088–95. doi:10.18517/ijaseit.9.6.10345.
  • Steinwart, I., and A. Christmann. 2008. Support vector machines. New York, United States: Springer Science & Business Media.
  • Stepin, I., J. M. Alonso, A. Catala, and M. Pereira-Fariña. 2021. A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence. IEEE Access 9:11974–2001. doi:10.1109/ACCESS.2021.3051315.
  • Sudita, I. D. N., Y. P. Situmeang, and M. Suarta. 2021. Compost and biochar characteristics test of some animal manure waste. International Journal on Advanced Science, Engineering and Information Technology 11 (1):266–71. doi:10.18517/ijaseit.11.1.11346.
  • Sung, Y. J., J. S. Lee, H. K. Yoon, H. Ko, and S. J. Sim. 2021. Outdoor cultivation of microalgae in a coal-fired power plant for conversion of flue gas CO2 into microalgal direct combustion fuels. Systems Microbiology and Biomanufacturing 1 (1):90–99. doi:10.1007/s43393-020-00007-7.
  • Tarafdar, A., G. Sowmya, K. Yogeshwari, G. Rattu, T. Negi, M. K. Awasthi, A. Hoang, R. Sindhu, and R. Sirohi. 2023. Environmental pollution mitigation through utilization of carbon dioxide by microalgae. Environmental Pollution 328:121623. doi:10.1016/j.envpol.2023.121623.
  • Tariq, M., H. Ali, N. Hussain, W. Nasim, M. Mubeen, S. Ahmad, and M. Hasanuzzaman. 2019. Fundamentals of crop rotation in agronomic management. In Agronomic crops, 545–59. Singapore: Springer Singapore. doi:10.1007/978-981-32-9151-5_24.
  • Thengane, S. K., K. Kung, J. Hunt, H. R. Gilani, C. J. Lim, S. Sokhansanj, and D. L. Sanchez. 2021. Market prospects for biochar production and application in California. Biofuels, Bioproducts and Biorefining 15 (6):1802–19. doi:10.1002/bbb.2280.
  • Tian, R., H. Dong, J. Chen, R. Li, Q. Xie, L. Li, Y. Li, Z. Jin, S. Xiao, and J. Xiao. 2021. Electrochemical behaviors of biochar materials during pollutant removal in wastewater: A review. The Chemical Engineering Journal 425:130585. doi:10.1016/j.cej.2021.130585.
  • Tian, H., Y. Wei, S. Cheng, Z. Huang, M. Qing, Y. Chen, H. Yang, and Y. Yang. 2022. Optimizing the gasification reactivity of biochar: The composition, structure and kinetics of biochar derived from biomass lignocellulosic components and their interactions during gasification process. Fuel 324:124709. doi:10.1016/j.fuel.2022.124709.
  • Tian, Y., and H. Zhang. 2016. Producing biogas from agricultural residues generated during phytoremediation process: Possibility, threshold, and challenges. International Journal of Green Energy 13 (15):1556–63. doi:10.1080/15435075.2016.1206017.
  • Touzani, S., J. Granderson, and S. Fernandes. 2018. Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy & Buildings 158:1533–43. doi:10.1016/j.enbuild.2017.11.039.
  • Trebbien, J., L. Rydin Gorjão, A. Praktiknjo, B. Schäfer, and D. Witthaut. 2023. Understanding electricity prices beyond the merit order principle using explainable AI. Energy and AI 13:100250. doi:10.1016/j.egyai.2023.100250.
  • Tsoka, T., X. Ye, Y. Chen, D. Gong, and X. Xia. 2022. Explainable artificial intelligence for building energy performance certificate labelling classification. Journal of Cleaner Production 355:131626. doi:10.1016/j.jclepro.2022.131626.
  • Tulu, T. K., S. M. Atnaw, R. D. Bededa, D. G. Wakshume, and V. R. Ancha. 2022. Kinetic modeling and optimization of biomass gasification in bubbling fluidized bed gasifier using response surface method. International Journal of Renewable Energy Development 11 (4):1043–59. doi:10.14710/ijred.2022.45179.
  • Uchimiya, M., S. Hiradate, and M. J. Antal Jr. 2015. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars. ACS Sustainable Chemistry & Engineering 3 (7):1642–49. doi:10.1021/acssuschemeng.5b00336.
  • Ullah, H., S. Khan, B. Chen, A. Shahab, L. Riaz, L. Lun, and N. Wu. 2023. Machine learning approach to predict adsorption capacity of Fe-modified biochar for selenium. Carbon Research 2 (1):29. doi:10.1007/s44246-023-00061-5.
  • Utama, C., C. Meske, J. Schneider, R. Schlatmann, and C. Ulbrich. 2023. Explainable artificial intelligence for photovoltaic fault detection: A comparison of instruments. Solar Energy 249:139–51. doi:10.1016/j.solener.2022.11.018.
  • Velumani, M., S. Rajamohan, A. Pandey, N. D. K. Pham, V. G. Nguyen, and A. T. Hoang. 2024. Nanocomposite from tannery sludge-derived biochar and zinc oxide nanoparticles for photocatalytic degradation of bisphenol a toward dual environmental benefits. Science of the Total Environment 907:167896. doi:10.1016/j.scitotenv.2023.167896.
  • Venderbosch, R., and W. Prins. 2010. Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining 4 (2):178–208. doi:10.1002/bbb.205.
  • Venkatesh, G., K. A. Gopinath, K. S. Reddy, B. S. Reddy, M. Prabhakar, C. Srinivasarao, V. Visha Kumari, and V. K. Singh. 2022. Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use. Sustainability 14 (4):2295. doi:10.3390/su14042295.
  • Vijayaraghavan, K. 2019. Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environmental Technology Reviews 8 (1):47–64. doi:10.1080/21622515.2019.1631393.
  • Vilas‐Boas, A. C. M., L. A. C. Tarelho, M. Kamali, T. Hauschild, D. T. Pio, D. Jahanianfard, A. P. D. Gomes, and M. A. A. Matos. 2021. Biochar from slow pyrolysis of biological sludge from wastewater treatment: Characteristics and effect as soil amendment. Biofuels, Bioproducts and Biorefining 15 (4):1054–72. doi:10.1002/bbb.2220.
  • Wang, H., R. Cai, B. Zhou, S. Aziz, B. Qin, N. Voropai, L. Gan, and E. Barakhtenko. 2020. Solar irradiance forecasting based on direct explainable neural network. Energy Conversion and Management 226:113487. doi:10.1016/j.enconman.2020.113487.
  • Wang, L., L. Chen, D. C. W. Tsang, B. Guo, J. Yang, Z. Shen, D. Hou, Y. S. Ok, and C. S. Poon. 2020. Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of Cleaner Production 258:120678. doi:10.1016/j.jclepro.2020.120678.
  • Wang, L., L. Chen, D. C. W. Tsang, H. W. Kua, J. Yang, Y. S. Ok, S. Ding, D. Hou, and C. S. Poon. 2019. The roles of biochar as green admixture for sediment-based construction products. Cement and Concrete Composites 104:103348. doi:10.1016/j.cemconcomp.2019.103348.
  • Wang, L., J. Deng, X. Yang, R. Hou, and D. Hou. 2023. Role of biochar toward carbon neutrality. Carbon Research 2 (1):2. doi:10.1007/s44246-023-00035-7.
  • Wang, B., W. Pei, B. Xue, and M. Zhang, 2022. A multi-objective genetic algorithm to evolving local interpretable model-agnostic explanations for deep neural networks in image classification. IEEE Transactions on Evolutionary Computation 1–1. 10.1109/TEVC.2022.3225591
  • Wang, C., J. Peng, H. Li, X. T. Bi, R. Legros, C. J. Lim, and S. Sokhansanj. 2013. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresource Technology 127:318–25. doi:10.1016/j.biortech.2012.09.092.
  • Wang, Y., R. Yoshiie, Y. Ueki, and I. Naruse. 2023. Effect of temperature on behavior and mechanism of biochar gasification in the mixed CO2 and H2O atmosphere. Journal of the Energy Institute 108:101238. doi:10.1016/j.joei.2023.101238.
  • Wattana, B., and P. Aungyut. 2022. Impacts of solar electricity generation on the Thai electricity industry. International Journal of Renewable Energy Development 11 (1):157–63. doi:10.14710/ijred.2022.41059.
  • Weiland, F., H. Hedman, M. Marklund, H. Wiinikka, O. Öhrman, and R. Gebart. 2013. Pressurized oxygen blown entrained-flow gasification of wood powder. Energy & Fuels 27 (2):932–41. doi:10.1021/ef301803s.
  • Wojtuch, A., R. Jankowski, and S. Podlewska. 2021. How can SHAP values help to shape metabolic stability of chemical compounds? Journal of Cheminformatics 13 (1):74. doi:10.1186/s13321-021-00542-y.
  • Xuan, N.-T.-T., T. M. T. Bui, and V. G. Bui. 2023. Simulation and experimental study of refuse-derived fuel gasification in an updraft gasifier. The International Journal of Renewable Energy Development. doi:10.14710/ijred.2023.53994.
  • Xu, Y., and B. Chen. 2013. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresource Technology 146:485–93. doi:10.1016/j.biortech.2013.07.086.
  • Xu, F., H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, 2019. Explainable AI: A brief survey on history, research areas, approaches and challenges, in: Natural Language Processing and Chinese Computing: 8th CCF International Conference, NLPCC 2019, Dunhuang, China, October 9–14, 2019, Proceedings, Part II 8. Springer, pp. 563–74.
  • Yang, H., X. Liu, Y. Liu, J. Cui, and Y. Xiao. 2023. Revolutionizing biochar synthesis for enhanced heavy metal adsorption: Harnessing machine learning and Bayesian optimization. Journal of Environmental Chemical Engineering 11 (5):110593. doi:10.1016/j.jece.2023.110593.
  • Yang, Y., M. Sun, M. Zhang, K. Zhang, D. Wang, and C. Lei. 2019. A fundamental research on synchronized torrefaction and pelleting of biomass. Renewable Energy 142:668–76. doi:10.1016/j.renene.2019.04.112.
  • Yang, M., C. Xu, Y. Bai, M. Ma, and X. Su. 2023. Investigating black-box model for wind power forecasting using local interpretable model-agnostic explanations algorithm: Why should a model be trusted? CSEE Journal of Power and Energy Systems 1–14. doi:10.17775/CSEEJPES.2021.07470.
  • Yang, X., C. Yuan, S. He, D. Jiang, B. Cao, and S. Wang. 2023. Machine learning prediction of specific capacitance in biomass derived carbon materials: Effects of activation and biochar characteristics. Fuel 331:125718. doi:10.1016/j.fuel.2022.125718.
  • Yao, Z., S. You, T. Ge, and C. H. Wang. 2018. Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation. Applied Energy 209:43–55. doi:10.1016/j.apenergy.2017.10.077.
  • Yek, P. N. Y., Y. W. Cheng, R. K. Liew, W. A. Wan Mahari, H. C. Ong, W.-H. Chen, W. Peng, Y.-K. Park, C. Sonne, S. H. Kong, et al. 2021. Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review. Renewable and Sustainable Energy Reviews 151:111645. doi:10.1016/j.rser.2021.111645.
  • Yin, Y., J. Li, S. Zhu, Q. Chen, C. Chen, Y. Rui, and J. Shang. 2024. Effect of biochar application on rice, wheat, and corn seedlings in hydroponic culture. Journal of Environmental Sciences 135:379–90. doi:10.1016/j.jes.2023.01.023.
  • Yoshida, T., T. Nomura, H. Gensai, H. Watada, T. Sano, and S. Ohara. 2015. Upgraded pellet making by torrefaction—torrefaction of Japanese wood pellets. Journal of Sustainable Bioenergy Systems 5 (3):82–88. doi:10.4236/jsbs.2015.53008.
  • You, S., Y. S. Ok, S. S. Chen, D. C. W. Tsang, E. E. Kwon, J. Lee, and C. H. Wang. 2017. A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology 246:242–53. doi:10.1016/j.biortech.2017.06.177.
  • Yuan, X., Y. Cao, J. Li, A. K. Patel, C.-D. Dong, X. Jin, C. Gu, A. C. K. Yip, D. C. W. Tsang, and Y. S. Ok. 2023. Recent advancements and challenges in emerging applications of biochar-based catalysts. Biotechnology Advances 67:108181. doi:10.1016/j.biotechadv.2023.108181.
  • Zafar, M. R., and N. Khan. 2021. Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability. Machine Learning and Knowledge Extraction 3 (3):525–41. doi:10.3390/make3030027.
  • Zaker, A., Z. Chen, X. Wang, and Q. Zhang. 2019. Microwave-assisted pyrolysis of sewage sludge: A review. Fuel Processing Technology 187:84–104. doi:10.1016/j.fuproc.2018.12.011.
  • Zednik, C. 2021. Solving the black box problem: A normative framework for explainable artificial intelligence. Philosophy & Technology 34 (2):265–88. doi:10.1007/s13347-019-00382-7.
  • Zhang, C., W.-H. Chen, S.-H. Ho, A. T. Hoang, and Y. Zhang. 2023. Tetracycline-adsorbed biochar for solid biofuel usage to achieve waste utilization for environmental sustainability. Environmental Research 237:116959. doi:10.1016/j.envres.2023.116959.
  • Zhang, W., R. Chen, J. Li, T. Huang, B. Wu, J. Ma, Q. Wen, J. Tan, and W. Huang. 2023. Synthesis optimization and adsorption modeling of biochar for pollutant removal via machine learning. Biochar 5 (1):25. doi:10.1007/s42773-023-00225-x.
  • Zhang, Y., M. He, L. Wang, J. Yan, B. Ma, X. Zhu, Y. S. Ok, V. Mechtcherine, and D. C. W. Tsang. 2022. Biochar as construction materials for achieving carbon neutrality. Biochar 4 (1):59. doi:10.1007/s42773-022-00182-x.
  • Zhang, X., K. Rajagopalan, H. Lei, R. Ruan, and B. K. Sharma. 2017. An overview of a novel concept in biomass pyrolysis: Microwave irradiation. Sustainable Energy and Fuels 1 (8):1664–99. doi:10.1039/C7SE00254H.
  • Zhang, Y., M. Salem, Y. Elmasry, A. T. Hoang, A. M. Galal, D. K. Pham Nguyen, and M. Wae-Hayee. 2022. Triple-objective optimization and electrochemical/technical/environmental study of biomass gasification process for a novel high-temperature fuel cell/electrolyzer/desalination scheme. Renewable Energy 201:379–99. doi:10.1016/j.renene.2022.10.059.
  • Zhang, W., H. Tan, Y. Chen, H. Yang, and H. Chen. 2022. Pyrolysis of hydrochar from hydrothermal treatment of kitchen waste: Effects of temperature, catalysts, and KOH addition. Journal of Analytical and Applied Pyrolysis 167:105664. doi:10.1016/j.jaap.2022.105664.
  • Zhao, L., Z.-F. Sun, X.-W. Pan, J.-Y. Tan, S.-S. Yang, J.-T. Wu, C. Chen, Y. Yuan, and N.-Q. Ren. 2023. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions. Water Research X 18:100167. doi:10.1016/j.wroa.2023.100167.
  • Zhou, X., X. Liu, L. Sun, X. Jia, F. Tian, Y. Liu, and Z. Wu. 2024. Prediction of biochar yield and specific surface area based on integrated learning algorithm. C 10 (1):10. doi:10.3390/c10010010.
  • Zhu, X., Y. Zhang, L. Chen, L. Wang, B. Ma, J. Li, C. S. Poon, and D. C. W. Tsang. 2023. Bonding mechanisms and micro-mechanical properties of the interfacial transition zone (ITZ) between biochar and paste in carbon-sink cement-based composites. Cement and Concrete Composites 139:105004. doi:10.1016/j.cemconcomp.2023.105004.
  • Zhu, L., Y. Zhang, H. Lei, X. Zhang, L. Wang, Q. Bu, and Y. Wei. 2018. Production of hydrocarbons from biomass-derived biochar assisted microwave catalytic pyrolysis. Sustainable Energy and Fuels 2 (8):1781–90. doi:10.1039/C8SE00096D.
  • Zou, R., M. Qian, C. Wang, W. Mateo, Y. Wang, L. Dai, X. Lin, Y. Zhao, E. Huo, L. Wang, et al. 2022. Biochar: From by-products of agro-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions. The Chemical Engineering Journal 441:135972. doi:10.1016/j.cej.2022.135972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.