95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Short-term wind power output prediction using hybrid-enhanced seagull optimization algorithm and support vector machine: A high-precision method

, &

References

  • Abdelhamid, M., E. H. Houssein, M. A. Mahdy, A. Selim, and S. Kamel. 2022. An improved seagull optimization algorithm for optimal coordination of distance and directional over-current relays. Expert Systems with Applications 200:116931. doi:10.1016/j.eswa.2022.116931.
  • Adedeji, P. A., S. Akinlabi, N. Madushele, and O. O. Olatunji. 2020. Wind turbine power output very short-term forecast: A comparative study of data clustering techniques in a PSO-ANFIS model. Journal of Cleaner Production 254:120135. doi:10.1016/j.jclepro.2020.120135.
  • Badal, F. R., P. Das, S. K. Sarker, and S. J. Das. 2019. A survey on control issues in renewable energy integration and microgrid. Protection and Control of Modern Power Systems 4 (1):8. doi:10.1186/s41601-019-0122-8.
  • Bastida-Molina, P., E. Hurtado-Perez, M. C. M. Gomez, J. Carcel-Carrasco, and A. Perez-Navarro. 2022. Energy sustainability evolution in the Mediterranean countries and synergies from a global energy scenario for the area. Energy 252:124067. doi:10.1016/j.energy.2022.124067.
  • Chen, H., W. D. Li, and X. Yang. 2020. A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Systems with Applications 158:113612. doi:10.1016/j.eswa.2020.113612.
  • Chen, H., J. Zhang, Y. Tao, and F. Tan. 2019. Asymmetric GARCH type models for asymmetric volatility characteristics analysis and wind power forecasting. Protection and Control of Modern Power Systems 4 (1):29. doi:10.1016/j.eswa.2020.113612. doi:10.1186/s41601-019-0146-0.
  • Daiem, M. M. A., A. Hatata, and N. Said. 2022. Modeling and optimization of semi-continuous anaerobic co-digestion of activated sludge and wheat straw using Nonlinear Autoregressive Exogenous neural network and seagull algorithm. Energy 241:122939. doi:10.1016/j.energy.2021.122939.
  • Dhiman, G., and V. Kumar. 2019. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-Based Systems 165:169–96. doi:10.1016/j.knosys.2018.11.024.
  • Dhiman, H. S., D. Deb, and J. M. Guerrero. 2019. Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renewable and Sustainable Energy Reviews 108:369–79. doi:10.1016/j.energy.2021.122939. doi:10.1016/j.rser.2019.04.002.
  • Dong, W. C., and S. H. Li. 2021. Reliability sensitivity of wind power system considering correlation of forecast errors based on multivariate NSTPNT method. Protection and Control of Modern Power Systems 6 (1):10. doi:10.1186/s41601-021-00192-0.
  • Duan, J., H. Zuo, Y. Bai, J. Duan, M. Chang, and B. Chen. 2021. Short-term wind speed forecasting using recurrent neural networks with error correction. Energy 217:119397. doi:10.1016/j.energy.2020.119397.
  • Engie. The La haute borne wind farm. https://opendata-renewables.engie.com/explore/?sort=modified. Visit at 2022-12-10.
  • Erdiwansyah, M., H. Husin, Nasaruddin, et al. 2021. A critical review of the integration of renewable energy sources with various technologies. Protection and Control of Modern Power Systems 6 (1):3. doi:10.1186/s41601-021-00181-3.
  • Eryilmaz, S., I. Bulanik, and Y. Devrim. 2021. Reliability based modeling of hybrid solar/wind power system for long term performance assessment. Reliability Engineering & System Safety 209:107478. doi:10.1016/j.ress.2021.107478.
  • Fan, Y., P. Wang, A. A. Heidari, M. Wang, X. Zhao, H. Chen, and C. Li. 2020. Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Systems with Applications 159:113502. doi:10.1016/j.eswa.2020.113502.
  • Fu, W., P. Fang, K. Wang, Z. Li, D. Xiong, and K. Zhang. 2021. Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model. Renewable Energy 179:1122–39. doi:10.1016/j.renene.2021.07.119.
  • Gonocruz, R. A., S. Uchiyama, and Y. Yoshida. 2022. Modeling of large-scale integration of agrivoltaic systems: Impact on the Japanese power grid. Journal of Cleaner Production 363:132545. doi:10.1016/j.jclepro.2022.132545.
  • Hameed, S. S., R. Ramadoss, K. Raju, and G. M. Shafiullah. 2022. A framework-based wind forecasting to assess wind potential with improved grey wolf optimization and support vector regression. Sustainability 14 (7):4235. doi:10.3390/su14074235.
  • He, Y., S. Guo, J. X. Zhou, J. L. Ye, J. Huang, K. Zheng, and X. R. Du. 2022. Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages. Renewable Energy 184:776–90. doi:10.1016/j.renene.2021.11.116.
  • Ji, Y. S., S. Lv, Z. Q. Qian, Y. T. Ji, J. W. Ren, K. M. Liang, and S. L. W. 2022. Comparative study on cooling method for concentrating photovoltaic system. Energy 253:124126. doi:10.1016/j.energy.2022.124126.
  • Jiang, H., Y. Yang, W. Ping, and Y. Dong. 2020. A novel hybrid classification method based on the Opposition-based Seagull Optimization Algorithm. IEEE Access 8:100778–90. doi:10.1109/ACCESS.2020.2997791.
  • Kaur, S., L. K. Awasthi, A. L. Sangal, and G. Dhiman. 2020. Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence 90:103541. doi:10.1016/j.engappai.2020.103541.
  • Li, G., J. Shi, and J. Y. Zhou. 2011. Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renewable Energy 36 (1):352–59. doi:10.1016/j.renene.2010.06.049.
  • Li, L. L., X. Zhao, M. L. Tseng, and R. T. Raymond. 2020. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. Journal of Cleaner Production 242:118447. doi:10.1016/j.jclepro.2019.118447.
  • Li, Z., X. R. Luo, M. J. Liu, X. Cao, S. H. Du, and H. X. Sun. 2022. Wind power prediction based on EEMD-Tent-SSA-LS-SVM. Energy Reports 8:3234–43. doi:10.1016/j.egyr.2022.02.150.
  • Lin, Y., U. Kruger, J. Zhang, Q. Wang, L. Lamont, and L. E. Chaar. 2015. Seasonal analysis and prediction of wind energy using random forests and ARX Model structures. IEEE Transactions on Control Systems Technology 23 (5):1994–2002. doi:10.1109/TCST.2015.2389031.
  • Liu, L. Y., and J. P. Xu. 2022. Multi-objective generation scheduling towards grid-connected hydro-solar-wind power system based the coordination of economy, management, society, environment: A case study from China. International Journal of Electrical Power & Energy Systems 142:108210. doi:10.1016/j.ijepes.2022.108210.
  • Neshat, M., M. M. Nezhad, E. Abbasnejad, S. Mirjalili, L. B. Tjernberg, D. A. Garcia, B. Alexander, and M. Wagner. 2021. A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the lillgrund offshore wind farm. Energy Conversation and Management 236:114002. doi:10.1016/j.enconman.2021.114002.
  • Ogliari, E., M. Guilizzoni, A. Giglio, and S. Pretto. 2021. Wind power 24-h ahead forecast by an artificial neural network and an hybrid model: Comparison of the predictive performance. Renewable Energy 178:1466–74. doi:10.1016/j.renene.2021.06.108.
  • Pan, J. W., X. F. Chen, X. N. Luo, X. S. Zeng, Z. H. Liu, W. X. Lai, Y. Xu, and C. Lu. 2022. Analysis of the impact of China’s energy industry on social development from the perspective of low-carbon policy. Energy Reports 8:14–27. doi:10.1016/j.egyr.2022.05.052.
  • Qu, Z., J. Xu, Z. Wang, R. Chi, and H. Liu. 2021. Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method. Energy 227:120309. doi:10.1016/j.energy.2021.120309.
  • Sahoo, B., S. K. Routray, and P. K. Rout. 2021. Complex dual-tree wavelet transform and unified power management based control architecture for hybrid wind power system. Sustainable Energy Technologies and Assessments 47:101560. doi:10.1016/j.seta.2021.101560.
  • Santos, L. L. S., H. Amaris, M. Alonso, E. A. Belati, E. W. S. Ângelos, and J. D. Melo. 2022. A novel methodology to determine the reactive power range requirements for wind generators considering the correlation of electricity demand and wind generation. Electric Power Systems Research 209:108023. doi:10.1016/j.epsr.2022.108023.
  • Shao, H. T., L. X. Qin, and Y. He. 2012. A nonlinear inertia weight particle swarm optimization algorithm with mutation operator. Computer Technology and Development 22 (8):30–3+38.
  • Steblyakova, L. P., E. Vechkinzova, Z. Khussainova, Z. Zhanibek, and Y. Gordeyeva. 2022. Green Energy: New opportunities or challenges to Energy Security for the common electricity market of the eurasian economic union countries. Energies 15 (14):5091. doi:10.3390/en15145091.
  • Wan, C., J. Lin, J. Wang, Y. Song, and Z. Y. Dong. 2017. Direct quantile regression for nonparametric probabilistic forecasting of wind power generation. IEEE Transactions on Power Systems 32 (4):2767–78. doi:10.1109/TPWRS.2016.2625101.
  • Wang, D. S., D. P. Tan, and L. Liu. 2018. Particle swarm optimization algorithm: An overview. Soft Computing 22 (2):387–408. doi:10.1007/s00500-016-2474-6.
  • Wang, J. Q., Y. Du, and J. Wang. 2020. Lstm based long-term energy consumption prediction with periodicity. Energy 197:117197. doi:10.1016/j.energy.2020.117197.
  • Wang, Y., L. L. Ye, Z. S. Yang, X. Ma, W. Q. Wu, L. Wang, et al. 2022. A novel structure adaptive fractional discrete grey forecasting model and its application in chinas crude oil production prediction. Expert Systems with Applications 207:118104. doi:10.1016/j.eswa.2022.118104.
  • Wu, S., Y. Y. Wang, and S. J. Cheng. 2013. Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system. Neurocomputing 102:163–75. doi:10.1016/j.neucom.2011.12.051.
  • Yu, J., K. Chen, J. Mori, and M. M. Rashid. 2013. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction. Energy 61:673–86. doi:10.1016/j.energy.2013.09.013.
  • Zhang, D. W., Z. G. Chen, and Y. Zhou. 2022. Wind power interval prediction based on improved whale optimization algorithm and fast learning network. Journal of Electrical Engineering & Technology 17 (3):1785–802. doi:10.1007/s42835-022-01014-5.
  • Zhang, J. T., C. T. Cheng, S. Yu, H. J. Wu, and M. P. Gao. 2021. Sharing hydropower flexibility in interconnected power systems: A case study for the China Southern power grid. Applied Energy 288:116645. doi:10.1016/j.apenergy.2021.116645.
  • Zhang, Y. G., J. H. Zhang, L. Y. Yu, Z. Y. Pan, C. Y. Feng, Y. Q. Sun, and F. Wang. 2022. A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique. Energy 254:124378. doi:10.1016/j.energy.2022.124378.
  • Zhang, Z. Q., R. Dong, D. L. Tan, L. Duan, and Z. H. Zhao. 2023. Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis. Energy 271:127025. doi:10.1016/j.energy.2023.127025.
  • Zhao, S. L., and S. S. Zhao. 2023. Wind power interval prediction via an Integrated Variational Empirical Decomposition Deep Learning Model. Sustainable 15 (7):6114. doi:10.3390/su15076114.
  • Zhao, Y. D., and Z. H. Fang. 2013. Particle swarm optimization algorithm with weight function’s learning factor. Journal of Computer Applications 33 (8):2265–68. doi:10.3724/SP.J.1087.2013.02265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.