341
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review of ionomers in catalyst layers of proton exchange membrane (PEM) modules: key parameters, characterization and manipulation methods

, & ORCID Icon
Received 27 Jul 2023, Accepted 22 Mar 2024, Published online: 01 Apr 2024

References

  • Balogun, E. O., N. Hussain, J. Chamier, and P. Barendse. 2019. Performance and durability studies of perfluorosulfonic acid ionomers as binders in PEMFC catalyst layers using electrochemical impedance spectroscopy. International Journal of Hydrogen Energy 44 (60):32219–30. doi:10.1016/j.ijhydene.2019.10.079.
  • Berlinger, S. A., B. D. McCloskey, and A. Z. Weber. 2018. Inherent acidity of perfluorosulfonic acid ionomer dispersions and implications for ink aggregation. The Journal of Physical Chemistry B 122 (31):7790–96. doi:10.1021/acs.jpcb.8b06493.
  • Bi, C., H. M. Zhang, S. H. Xiao, Y. Zhang, Z. S. Mai, and X. F. Li. 2011. Grafted porous PTFE/partially fluorinated sulfonated poly(arylene ether ketone) composite membrane for PEMFC applications. Journal of Membrane Science 376 (1–2):170–78. doi:10.1016/j.memsci.2011.04.017.
  • Brodt, M., R. Wycisk, N. Dale, and P. Pintauro. 2016. Power output and durability of electrospun fuel cell fiber cathodes with PVDF and Nafion/PVDF binders. Journal of the Electrochemical Society 163 (5):F401–10. doi:10.1149/2.0711605jes.
  • Carmo, M., D. L. Fritz, J. Merge, and D. Stolten. 2013. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy 38 (12):4901–34. doi:10.1016/j.ijhydene.2013.01.151.
  • Chen, F. D., S. Chen, A. Wang, M. Wang, L. Guo, and Z. D. Wei. 2023. Blocking the sulfonate group in Nafion to unlock platinum’s activity in membrane electrode assemblies. Nature Catalysis 6 (5):392–401. doi:10.1038/s41929-023-00949-w.
  • Chen, Z. C., L. Guo, L. Pan, T. Q. Yan, Z. X. He, Y. Li, C. X. Shi, Z. F. Huang, X. W. Zhang, and J. J. Zou. 2022. Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers. Advanced Energy Materials 12 (14):2103670. doi:10.1002/aenm.202103670.
  • Chen, G. Y., C. Wang, Y. J. Lei, J. B. Zhang, Z. M. Mao, Z. Q. Mao, J. W. Guo, J. Q. Li, and M. G. Ouyang. 2017. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs. International Journal of Hydrogen Energy 42 (50):29960–65. doi:10.1016/j.ijhydene.2017.06.229.
  • Chen, M., C. Zhao, F. M. Sun, J. T. Fan, H. Li, and H. J. Wang. 2020. Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system. eTransportation 5:100075. doi:10.1016/j.etran.2020.100075.
  • Choi, S., S. H. Shin, D. H. Lee, G. Doo, D. W. Lee, J. Hyun, S. H. Yang, D. M. Yu, J. Y. Lee, and H. T. Kim. 2022. Oligomeric chain extender-derived poly(p-phenylene)-based multi-block polymer membranes for a wide operating current density range in polymer electrolyte membrane water electrolysis. Journal of Power Sources 526:231146. doi:10.1016/j.jpowsour.2022.231146.
  • Coms, F. D., H. Liu, and J. E. Owejan. 2008. Mitigation of perfluorosulfonic acid membrane chemical degradation using cerium and manganese ions. In Proton Exchange membrane fuel cells 8, pts 1 and 2. ECS Transactions 16 (2):1735. doi:10.1149/1.2982015.
  • Deabate, S., G. Gebel, P. Huguet, A. Morin, and G. Pourcelly. 2012. 3 in situ and operando determination of the water content distribution in proton conducting membranes for fuel cells: A critical review. Energy & Environmental Science 5 (10):8824–47. doi:10.1039/c2ee21834h.
  • Dong, H., C. Xu, and W. Chen. 2023. Modeling and configuration optimization of the rooftop photovoltaic with electric-hydrogen-thermal hybrid storage system for zero-energy buildings: Consider a cumulative seasonal effect. Building Simulation 16 (10):1799–819. doi:10.1007/s12273-023-1066-5.
  • Eriksson, P., A. A. Tal, A. Skallberg, C. Brommesson, Z. J. Hu, R. D. Boyd, W. Olovsson, N. Fairley, I. A. Abrikosov, X. Zhang, et al. 2018. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Scientific Reports 8(1):6999. doi:10.1038/s41598-018-25390-z.
  • Esfahani, R. A. M., H. M. Fruehwald, F. Afsahi, and E. B. Easton. 2018. Enhancing fuel cell catalyst layer stability using a dual-function sulfonated silica-based ionomer. Applied Catalysis B-Environmental 232:314–21. doi:10.1016/j.apcatb.2018.03.080.
  • Fan, J. T., M. Chen, Z. L. Zhao, Z. Zhang, S. Y. Ye, S. Y. Xu, H. J. Wang, and H. Li. 2021. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nature Energy 6 (5):475–86. doi:10.1038/s41560-021-00824-7.
  • Fornaciari, J. C., M. R. Gerhardt, J. Zhou, Y. N. Regmi, N. Danilovic, A. T. Bell, and A. Z. Weber. 2020. The role of water in vapor-fed proton-exchange-membrane electrolysis. Journal of the Electrochemical Society 167 (10):104508. doi:10.1149/1945-7111/ab9b09.
  • García-Salaberri, P. A. 2023a. Proton exchange membranes for polymer electrolyte fuel cells: An analysis of perfluorosulfonic acid and aromatic hydrocarbon ionomers. Sustainable Materials and Technologies 38: e00727. doi:10.1016/j.susmat.2023.e00727.
  • García-Salaberri, P. A. 2023b. A numerical assessment of mitigation strategies to reduce locaoxygen and proton transport resistances in polymer electrolyte fuel cells. Materia/s 16 (21): 6935. doi:10.3390/ma16216935.
  • García-Salaberri, P. A., A. Sánchez-Ramos, and P. K. Das. 2022. On the optimal cathode catalyst layer for polymer electrolyte fuel cells: Bimodal pore size distributions with functionalized microstructures. Frontiers in Energy Research 10. doi:10.3389/fenrg.2022.1058913.
  • Garsany, Y., R. W. Atkinson, M. B. Sassin, R. M. E. Hjelm, B. D. Gould, and K. E. Swider-Lyons. 2018. Improving PEMFC performance using short-side-chain low-equivalent-weight PFSA ionomer in the cathode catalyst layer. Journal of the Electrochemical Society 165 (5):F381–91. doi:10.1149/2.1361805jes.
  • Gawas, R., R. Sun, Y. W. Li, K. C. Neyerlin, Y. A. Elabd, M. Tang, and J. Snyder. 2021. Characterization of a sulfonated Poly(Ionic Liquid) block copolymer as an ionomer for proton exchange membrane fuel cells using rotating disk electrode. Journal of the Electrochemical Society 168 (12):124511. doi:10.1149/1945-7111/ac4375.
  • Guimet, A., L. Chikh, A. Morin, and O. Fichet. 2016a. Effect of a neutral fluorinated network on the properties of a perfluorosulfonic acid ionomer as proton exchange membrane. International Journal of Hydrogen Energy 41 (34):15562–72. doi:10.1016/j.ijhydene.2016.05.240.
  • Guimet, A., L. Chikh, A. Morin, and O. Fichet. 2016b. Strengthening of perfluorosulfonic acid ionomer with sulfonated hydrocarbon polyelectrolyte for application in medium-temperature fuel cell. Journal of Membrane Science 514:358–65. doi:10.1016/j.memsci.2016.04.031.
  • Guo, Y. Q., D. Z. Yang, B. Li, D. J. Yang, P. W. Ming, and C. M. Zhang. 2021. Effect of dispersion solvents and ionomers on the rheology of catalyst inks and catalyst layer structure for proton exchange membrane fuel cells. ACS Applied Materials & Interfaces 13 (23):27119–28. doi:10.1021/acsami.1c07070.
  • Haque, M. A., A. B. Sulong, R. E. Rosli, E. H. Majlan, L. K. Shyuan, M. A. A. Mashud, and Ieee. 2015. Measurement of hydrogen ion conductivity through proton exchange membrane. In 2015 IEEE International Wie Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, 552–55. doi: 10.1109/WIECON-ECE.2015.7443991.
  • Harada, M., S. Takata, H. Iwase, S. Kajiya, H. Kadoura, and T. Kanaya. 2021. Distinguishing adsorbed and deposited ionomers in the catalyst Layer of polymer electrolyte fuel cells using contrast-variation small-angle neutron scattering. American Chemical Society Omega 6 (23):15257–63. doi:10.1021/acsomega.1c01535.
  • Haragirimana, A., N. Li, Z. X. Hu, and S. W. Chen. 2021. A facile, effective thermal crosslinking to balance stability and proton conduction for proton exchange membranes based on blend sulfonated poly(ether ether ketone)/sulfonated poly(arylene ether sulfone). International Journal of Hydrogen Energy 46 (29):15866–77. doi:10.1016/j.ijhydene.2021.02.022.
  • He, P., Y. T. Mu, J. W. Park, and W. Q. Tao. 2020. Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell. Applied Energy 277:115555. doi:10.1016/j.apenergy.2020.115555.
  • Huang, B. Y., Y. He, K. Huang, Y. Q. Zhu, Y. W. Zhang, and Z. H. Wang. 2019. Effects of Nafion content in membrane electrode assembly on electrochemical Bunsen reaction in high electrolyte acidity. International Journal of Hydrogen Energy 44 (23):11646–54. doi:10.1016/j.ijhydene.2019.03.174.
  • Jang, Y., C. Seol, S. M. Kim, and S. Jang. 2022. Investigation of the correlation effects of catalyst loading and ionomer content in an anode electrode on the performance of polymer electrode membrane water electrolysis. International Journal of Hydrogen Energy 47 (42):18229–39. doi:10.1016/j.ijhydene.2022.04.019.
  • Jiao, K., J. Xuan, Q. Du, Z. M. Bao, B. A. Xie, B. W. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, et al. 2021. Designing the next generation of proton-exchange membrane fuel cells. Nature 595(7867):361–69. doi:10.1038/s41586-021-03482-7.
  • Jimenez-Garcia, J. C., J. A. Olmos-Asar, E. A. Franceschini, and M. M. Mariscal. 2021. Effect of Nafion content and hydration level on the electrochemical area of a Pt nanocatalyst in the triple-phase boundary. Physical Chemistry ChemicaL Physics 23 (48):27543–51. doi:10.1039/d1cp03731e.
  • Jinnouchi, R., K. Kudo, N. Kitano, and Y. Morimoto. 2016. Molecular dynamics simulations on O2 permeation through Nafion Ionomer on platinum surface. Electrochimica Acta 188:767–76. doi:10.1016/j.electacta.2015.12.031.
  • Kakinuma, K., M. Kawamoto, K. Tamoto, M. Yamaguchi, S. Honmura, A. Iiyama, and M. Uchida. 2021. Evaluation of ionomer distribution on electrocatalysts for polymer electrolyte fuel cells by use of a low acceleration voltage scanning electron microscope. Journal of the Electrochemical Society 168 (5):054510. doi:10.1149/1945-7111/abfa59.
  • Katzenberg, A., A. Chowdhury, M. F. Fang, A. Z. Weber, Y. Okamoto, A. Kusoglu, and M. A. Modestino. 2020. Highly permeable perfluorinated sulfonic acid lonomers for improved electrochemical devices: Insights into structure-property relationships. Journal of the American Chemical Society 142 (8):3742–52. doi:10.1021/jacs.9b09170.
  • Kim, K. H., H. J. Kim, K. Y. Lee, J. H. Jang, S. Y. Lee, E. Cho, I. H. Oh, and T. H. Lim. 2008. Effect of nafion (R) gradient in dual catalyst layer on proton exchange membrane fuel cell performance. International Journal of Hydrogen Energy 33 (11):2783–89. doi:10.1016/j.ijhydene.2008.03.015.
  • Kim, T. H., J. Y. Yi, C. Y. Jung, E. Jeong, and S. C. Yi. 2017. Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells. International Journal of Hydrogen Energy 42 (1):478–85. doi:10.1016/j.ijhydene.2016.12.015.
  • Kim, T. H., J. H. Yoo, T. Maiyalagan, and S. C. Yi. 2019. Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells. Applied Surface Science 481:777–84. doi:10.1016/j.apsusc.2019.03.113.
  • Klose, C., T. Saatkamp, A. Munchinger, L. Bohn, G. Titvinidze, M. Breitwieser, K. D. Kreuer, and S. Vierrath. 2020. All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency. Advanced Energy Materials 10 (14):1903995. doi:10.1002/aenm.201903995.
  • Korte, C., F. Conti, J. Wackerl, P. Dams, A. Majerus, and W. Lehnert. 2015. Uptake of protic electrolytes by polybenzimidazole-type polymers: Absorption isotherms and electrolyte/polymer interactions. Journal of Applied Electrochemistry 45 (8):857–71. doi:10.1007/s10800-015-0855-7.
  • Krishnan, N. N., A. Konovalova, D. Aili, Q. Li, H. S. Park, J. H. Jang, H. J. Kim, and D. Henkensmeier. 2019. Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells. Journal of Membrane Science 588:117218. doi:10.1016/j.memsci.2019.117218.
  • Kudo, K., R. Jinnouchi, and Y. Morimoto. 2016. Humidity and temperature dependences of oxygen transport resistance of nafion thin film on platinum electrode. Electrochimica Acta 209:682–90. doi:10.1016/j.electacta.2016.04.023.
  • Kumari, S., R. T. White, B. Kumar, and J. M. Spurgeon. 2016. Solar hydrogen production from seawater vapor electrolysis. Energy & Environmental Science 9 (5):1725–33. doi:10.1039/c5ee03568f.
  • Kurihara, Y., T. Mabuchi, and T. Tokumasu. 2017. Molecular analysis of structural effect of Ionomer on oxygen permeation properties in PEFC. Journal of the Electrochemical Society 164 (6):F628–37. doi:10.1149/2.1301706jes.
  • Kurihara, Y., T. Mabuchi, and T. Tokumasu. 2019. Molecular dynamics study of oxygen transport resistance through ionomer thin film on Pt surface. Journal of Power Sources 414:263–71. doi:10.1016/j.jpowsour.2019.01.011.
  • Kusoglu, A., and A. Z. Weber. 2017. New insights into perfluorinated sulfonic-acid lonomers. Chemical Reviews 117 (3):987–1104. doi:10.1021/acs.chemrev.6b00159.
  • Lee, J., S. Escribano, F. Micoud, G. Gebel, S. Lyonnard, L. Porcar, N. Martinez, and A. Morin. 2020. In situ measurement of ionomer water content and liquid water saturation in fuel cell catalyst layers by high-resolution small-angle neutron scattering. ACS Applied Energy Materials 3 (9):8393–401. doi:10.1021/acsaem.0c00853.
  • Lee, J. H., H. Kang, S. D. Yim, Y. J. Sohn, and S. G. Lee. 2022. Revelation of transport properties of ultra-thin ionomer films in catalyst layer of polymer electrolyte membrane fuel cells using molecular dynamics. Applied Surface Science 598:153815. doi:10.1016/j.apsusc.2022.153815.
  • Li, D. J., R. H. Qi, and L. Z. Zhang. 2019. Performance improvement of electrolytic air dehumidification systems with high-water-uptake polymer electrolyte membranes. Journal of Applied Polymer Science 136 (26):47676. doi:10.1002/app.47676.
  • Li, H. Y., R. H. Qi, and L. Z. Zhang. 2020. Analysis and optimization of material physical characteristics for electrolytic air dehumidifier with a PEM. Applied Thermal Engineering 169:114929. doi:10.1016/j.applthermaleng.2020.114929.
  • Liu, Z., Y. Lu, Z. Cui, and R. Qi. 2023. Coaxial nanofiber IrOx@SbSnOx as an efficient electrocatalyst for proton exchange membrane dehumidifier. ACS Applied Materials & Interfaces 15 (8):10606–20. doi:10.1021/acsami.2c18375.
  • Liu, S. Q., S. Yuan, Y. W. Liang, H. Li, Z. L. Xu, Q. Xu, J. W. Yin, S. Y. Shen, X. H. Yan, and J. B. Zhang. 2023. Engineering the catalyst layers towards enhanced local oxygen transport of low-pt proton exchange membrane fuel cells: Materials, designs, and methods. International Journal of Hydrogen Energy 48 (11):4389–417. doi:10.1016/j.ijhydene.2022.10.249.
  • Li, G. F., D. L. Yang, and P. Y. A. Chuang. 2018. Defining nafion ionomer roles for enhancing alkaline oxygen evolution electrocatalysis. ACS Catalysis 8 (12):11688–98. doi:10.1021/acscatal.8b02217.
  • Li, C. Z., K. Yu, A. Bird, F. Guo, J. Ilavsky, Y. D. Liu, D. A. Cullen, A. Kusoglu, A. Z. Weber, P. J. Ferreira, et al. 2023. Unraveling the core of fuel cell performance: Engineering the ionomer/catalyst interface. Energy & Environmental Science 16(7):2977–90. doi:10.1039/d2ee03553g.
  • Lopez-Haro, M., L. Guetaz, T. Printemps, A. Morin, S. Escribano, P. H. Jouneau, P. Bayle-Guillemaud, F. Chandezon, and G. Gebel. 2014. Three-dimensional analysis of nafion layers in fuel cell electrodes. Nature Communications 5 (1):5229. doi:10.1038/ncomms6229.
  • Lyu, X., T. Van Cleve, E. Young, J. L. Li, H. R. Yu, D. A. Cullen, K. C. Neyerlin, and A. Serov. 2023. Design of graded cathode catalyst layers with various ionomers for fuel cell application. Journal of Power Sources 556:232530. doi:10.1016/j.jpowsour.2022.232530.
  • Malek, A., E. Sadeghi, J. Jankovic, M. Eikerling, and K. Malek. 2020. Aquivion ionomer in mixed alcohol-water solution: Insights from multiscale molecular modeling. Journal of Physical Chemistry C 124 (6):3429–38. doi:10.1021/acs.jpcc.9b08969.
  • Martens, I., L. G. A. Melo, M. M. West, D. P. Wilkinson, D. Bizzotto, and A. P. Hitchcock. 2020. Imaging reactivity of the Pt-lonomer interface in fuel-cell catalyst layers. ACS Catalysis 10 (15):8285–92. doi:10.1021/acscatal.0c01594.
  • Martinez, N., G. Gebel, N. Blanc, N. Boudet, J. S. Micha, S. Lyonnard, and A. Morin. 2019. Heterogeneous nanostructural aging of fuel cell ionomer revealed by Operando SAXS. ACS Applied Energy Materials 2 (5):3071–80. doi:10.1021/acsaem.8b02004.
  • Martinez, N., Z. Peng, A. Morin, L. Porcar, G. Gebel, and S. Lyonnard. 2017. Real time monitoring of water distribution in an operando fuel cell during transient states. Journal of Power Sources 365:230–34. doi:10.1016/j.jpowsour.2017.08.067.
  • Mashio, T., A. Ohma, and T. Tokumasu. 2016. Molecular Dynamics Study of Ionomer Adsorption at a carbon surface in catalyst ink. Electrochimica Acta 202:14–23. doi:10.1016/j.electacta.2016.04.004.
  • Modestino, M. A., M. Dumortier, S. M. H. Hashemi, S. Haussener, C. Moser, and D. Psaltis. 2015. Vapor-fed microfluidic hydrogen generator. Lab on A Chip 15 (10):2287–96. doi:10.1039/c5lc00259a.
  • Molaeimanesh, G. R., M. A. Bamdezh, and M. Nazemian. 2018. Impact of catalyst layer morphology on the performance of PEM fuel cell cathode via lattice Boltzmann simulation. International Journal of Hydrogen Energy 43 (45):20959–75. doi:10.1016/j.ijhydene.2018.09.076.
  • Morawietz, T., M. Handl, C. Oldani, K. A. Friedrich, and R. Hiesgen. 2016. Quantitative in situ analysis of ionomer structure in fuel cell catalytic layers. ACS Applied Materials & Interfaces 8 (40):27044–54. doi:10.1021/acsami.6b07188.
  • Morin, A., G. Gebel, L. Porcar, Z. Peng, N. Martinez, A. Guillermo, and S. Lyonnard. 2017. Quantitative multi-scale operando diagnosis of water localization inside a fuel cell. Journal of the Electrochemical Society 164 (2):F9–21. doi:10.1149/2.1401614jes.
  • Mu, Y. T., A. Z. Weber, Z. L. Gu, T. Schuler, and W. Q. Tao. 2020. Mesoscopic analyses of the impact of morphology and operating conditions on the transport resistances in a proton-exchange-membrane fuel-cell catalyst layer. Sustainable Energy & Fuels 4 (7):3623–39. doi:10.1039/d0se00560f.
  • Normile, S. J., and I. V. Zenyuk. 2019. Imaging ionomer in fuel cell catalyst layers with synchrotron nano transmission x-ray microscopy. Solid State Ionics 335:38–46. doi:10.1016/j.ssi.2019.02.017.
  • Ono, Y., A. Ohma, K. Shinohara, and K. Fushinobu. 2013. Influence of equivalent weight of ionomer on local oxygen transport resistance in cathode catalyst layers. Journal of the Electrochemical Society 160 (8):F779–87. doi:10.1149/2.040308jes.
  • Ott, S., A. Orfanidi, H. Schmies, B. Anke, H. N. Nong, J. Hübner, U. Gernert, M. Gliech, M. Lerch, and P. Strasser. 2020. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nature materials 19 (1):77–85. doi:10.1038/s41563-019-0487-0.
  • Park, Y. C., K. Kakinuma, H. Uchida, M. Watanabe, and M. Uchida. 2015. Effects of short-side-chain perfluorosulfonic acid ionomers as binders on the performance of low Pt loading fuel cell cathodes. Journal of Power Sources 275:384–91. doi:10.1016/j.jpowsour.2014.10.149.
  • Park, J. E., J. Kim, J. Han, K. Kim, S. Park, S. Kim, H. S. Park, Y. H. Cho, J. C. Lee, and Y. E. Sung. 2021. High-performance proton-exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer. Journal of Membrane Science 620:118871. doi:10.1016/j.memsci.2020.118871.
  • Peron, J., D. Edwards, M. Haldane, X. Y. Luo, Y. M. Zhang, S. Holdcroft, and Z. Q. Shi. 2011. Fuel cell catalyst layers containing short-side-chain perfluorosulfonic acid ionomers. Journal of Power Sources 196 (1):179–81. doi:10.1016/j.jpowsour.2010.06.050.
  • Poojary, S., M. N. Islam, U. N. Shrivastava, E. P. L. Roberts, and K. Karan. 2020. Transport and Electrochemical Interface Properties of Ionomers in low-pt loading catalyst layers: Effect of ionomer equivalent weight and relative humidity. Molecules 25 (15):3387. doi:10.3390/molecules25153387.
  • Pu, X. T., Y. T. Duan, J. L. Li, C. Y. Ru, and C. J. Zhao. 2021. Understanding of hydrocarbon ionomers in catalyst layers for enhancing the performance and durability of proton exchange membrane fuel cells. Journal of Power Sources 493:229671. doi:10.1016/j.jpowsour.2021.229671.
  • Putra, A., H. Iwase, D. Yamaguchi, S. Koizumi, Y. Maekawa, M. Matsubayashi, and T. Hashimoto. 2010. In-situ observation of dynamic water behavior in polymer electrolyte fuel cell by combined method of small-angle neutron scattering and neutron radiography. Journal of Physics Conference Series 247 (1):012044. doi:10.1088/1742-6596/247/1/012044.
  • Qi, R. H., D. J. Li, H. Y. Li, H. H. Wang, and L. Z. Zhang. 2018. Heat and mass transfer in a polymeric electrolyte membrane-based electrochemical air dehumidification system: Model development and performance analysis. International Journal of Heat and Mass Transfer 126:888–98. doi:10.1016/j.ijheatmasstransfer.2018.06.010.
  • Qi, R. H., D. J. Li, and L. Z. Zhang. 2017. Performance investigation on polymeric electrolyte membrane-based electrochemical air dehumidification system. Applied Energy 208:1174–83. doi:10.1016/j.apenergy.2017.09.035.
  • Qiu, D. K., L. F. Peng, X. M. Lai, M. Ni, and W. Lehnert. 2019. Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell. Renewable and Sustainable Energy Reviews 113:109289. doi:10.1016/j.rser.2019.109289.
  • Ramaswamy, N., S. Kumaraguru, R. Koestner, T. Fuller, W. B. Gu, N. Kariuki, D. Myers, P. J. Dudenas, and A. Kusoglu. 2021. Ionomer side chain length and equivalent weight impact on high Current density transport resistances in PEMFC cathodes. Journal of the Electrochemical Society 168 (2):024518. doi:10.1149/1945-7111/abe5eb.
  • Ren, H., Y. Teng, X. C. Meng, D. H. Fang, H. Huang, J. T. Geng, and Z. G. Shao. 2021. Ionomer network of catalyst layers for proton exchange membrane fuel cell. Journal of Power Sources 506:230186. doi:10.1016/j.jpowsour.2021.230186.
  • Reshma, P., and K. Ashwini. 2017. Cerium oxide nanoparticles: Synthesis, characterization and study of antimicrobial activity. Journal of Nanomaterials & Molecular Nanotechnology 6 (3). doi: 10.4172/2324-8777.1000219.
  • Rolfi, A., C. Oldani, L. Merlo, D. Facchi, and R. Ruffo. 2018. New perfluorinated ionomer with improved oxygen permeability for application in cathode polymeric electrolyte membrane fuel cell. Journal of Power Sources 396:95–101. doi:10.1016/j.jpowsour.2018.05.093.
  • Salvado, M. B., P. Schott, L. Guetaz, M. Gerard, T. David, and Y. Bultel. 2021. Towards the understanding of transport limitations in a proton-exchange membrane fuel cell catalyst layer: Performing agglomerate scale direct numerical simulations on electron-microscopy-based geometries. Journal of Power Sources 482:228893. doi:10.1016/j.jpowsour.2020.228893.
  • Sanchez-Ramos, A., J. T. Gostick, and P. A. Garcia-Salaberri. 2021. Modeling the effect of low Pt loading cathode catalyst Layer in polymer electrolyte fuel cells: Part I. Model formulation and validation. Journal of the Electrochemical Society 168 (12):124514. doi:10.1149/1945-7111/ac4456.
  • Sassin, M. B., Y. Garsany, R. W. Atkinson, R. M. E. Hjelm, and K. E. Swider-Lyons. 2019. Understanding the interplay between cathode catalyst layer porosity and thickness on transport limitations en route to high-performance PEMFCs. International Journal of Hydrogen Energy 44 (31):16944–55. doi:10.1016/j.ijhydene.2019.04.194.
  • Shahgaldi, S., I. Alaefour, J. Zhao, and X. G. Li. 2018. Impact of ionomer in the catalyst layers on proton exchange membrane fuel cell performance under different reactant flows and pressures. Fuel 227:35–41. doi:10.1016/j.fuel.2018.04.076.
  • Shahgaldi, S., A. Ozden, X. G. Li, and F. Hamdullahpur. 2018. Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells. Energy Conversion and Management 171:1476–86. doi:10.1016/j.enconman.2018.06.078.
  • Shang, Z. H., R. Wycisk, and P. Pintauro. 2021. Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells. Energies 14 (20):6709. doi:10.3390/en14206709.
  • Shibayama, M., T. Matsunaga, T. Kusano, K. Amemiya, N. Kobayashi, and T. Yoshida. 2014. SANS studies on catalyst ink of fuel cell. Journal of Applied Polymer Science 131 (3):39842. doi:10.1002/app.39842.
  • Shinozaki, K., S. Kajiya, S. Yamakawa, N. Hasegawa, T. Suzuki, M. Shibata, and R. Jinnouchi. 2023. Investigation of gas transport resistance in fuel cell catalyst layers via hydrogen limiting current measurements of CO-covered catalyst surfaces. Journal of Power Sources 565:232909. doi:10.1016/j.jpowsour.2023.232909.
  • Siracusano, S., V. Baglio, A. Stassi, L. Merlo, E. Moukheiber, and A. S. Arico. 2014. Performance analysis of short-side-chain aquivion (R) perfluorosulfonic acid polymer for proton exchange membrane water electrolysis. Journal of Membrane Science 466:1–7. doi:10.1016/j.memsci.2014.04.030.
  • Siracusano, S., S. Trocino, N. Briguglio, V. Baglio, and A. S. Arico. 2018. Electrochemical impedance spectroscopy as a diagnostic tool in polymer electrolyte membrane electrolysis. Materials 11 (8):1368. doi:10.3390/ma11081368.
  • Siracusano, S., N. Van Dijk, E. Payne-Johnson, V. Baglio, and A. S. Arico. 2015. Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers. Applied Catalysis B-Environmental 164:488–95. doi:10.1016/j.apcatb.2014.09.005.
  • Sleiti, A. K., W. A. Al-Ammari, R. Arshad, and T. El Mekkawy. 2022. Energetic, economic, and environmental analysis of solid oxide fuel cell-based combined cooling, heating, and power system for cancer care hospital. Building Simulation 15 (8):1437–54. doi:10.1007/s12273-021-0865-9.
  • Soboleva, T., X. Zhao, K. Malek, Z. Xie, T. Navessin, and S. Holdcroft. 2010. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Applied Materials & Interfaces 2 (2):375–84. doi:10.1021/am900600y.
  • Spurgeon, J. M., and N. S. Lewis. 2011. Proton exchange membrane electrolysis sustained by water vapor. Energy & Environmental Science 4 (8):2993–98. doi:10.1039/c1ee01203g.
  • Suermann, M., T. J. Schmidt, and F. N. Buchi. 2015. Investigation of mass transport losses in polymer electrolyte electrolysis cells. ECS Transactions 69 (17):1141–48. doi:10.1149/06917.1141ecst.
  • Sun, Y., L. Cui, J. Gong, J. Zhang, Y. Xiang, and S. Lu. 2019. Design of a catalytic layer with hierarchical proton transport structure: The role of nafion nanofiber. ACS Sustainable Chemistry & Engineering 7 (3):2955–63. doi:10.1021/acssuschemeng.8b03910.
  • Sun, F. M., H. Liu, M. Chen, and H. J. Wang. 2023. Boosting oxygen transport through mitigating the interaction between Pt and ionomer in proton exchange membrane fuel cell. Journal of Power Sources 553:232240. doi:10.1016/j.jpowsour.2022.232240.
  • Sun, X. Y., H. M. Yu, X. Q. Gao, and Z. G. Shao. 2021. The threshold method in the analysis of catalyst layer porosity towards oxygen transport resistance in PEMFCs. Catalysis Science & Technology 11 (20):6804–10. doi:10.1039/d1cy00882j.
  • Talukdar, K., P. Gazdzicki, and K. A. Friedrich. 2019. Comparative investigation into the performance and durability of long and short side chain ionomers in polymer electrolyte membrane fuel cells. Journal of Power Sources 439:227078. doi:10.1016/j.jpowsour.2019.227078.
  • Tanaka, M. 2016. Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polymer Journal 48 (1):51–58. doi:10.1038/pj.2015.76.
  • Tinh, V. D. C., and D. Kim. 2020. Enhancement of oxidative stability of PEM fuel cell by introduction of HO center dot radical scavenger in nafion ionomer. Journal of Membrane Science 613:118517. doi:10.1016/j.memsci.2020.118517.
  • Van Cleve, T., S. Khandavalli, A. Chowdhury, S. Medina, S. Pylypenko, M. Wang, K. L. More, N. Kariuki, D. J. Myers, A. Z. Weber, et al. 2019. Dictating Pt-based electrocatalyst performance in polymer electrolyte fuel cells, from formulation to application. ACS Applied Materials and Interfaces 11(50):46953–64. doi:10.1021/acsami.9b17614.
  • Vinothkannan, M., B. Son, and S. Shanmugam. 2022. Porous gC(3)N(4)-Gd2Zr2O7 enables the high-temperature operation of nafion membranes in polymer electrolyte fuel cells over 500 hours. Journal of Materials Chemistry A 10 (16):8975–88. doi:10.1039/d2ta00483f.
  • Wang, L., S. G. Advani, and A. K. Prasad. 2013. Pbi/Nafion/SiO2 hybrid membrane for high-temperature low-humidity fuel cell applications. Electrochimica Acta 105:530–34. doi:10.1016/j.electacta.2013.05.043.
  • Wang, Y. L., T. Liu, H. Sun, W. He, Y. Z. Fan, and S. X. Wang. 2020. Investigation of dry ionomer volume fraction in cathode catalyst layer under different relative humilities and nonuniform ionomer-gradient distributions for PEM fuel cells. Electrochimica Acta 353:136491. doi:10.1016/j.electacta.2020.136491.
  • Wang, C., S. B. Wang, J. B. Zhang, J. Q. Li, M. G. OuYang, and J. L. Wang. 2015. The key materials and components for proton exchange membrane fuel cell. Progress in Chemistry 27 (2–3):310–20. doi:10.7536/PC140827.
  • Wan, Y., D. K. Qiu, P. Y. Yi, L. F. Peng, and X. M. Lai. 2022. Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer. Applied Energy 312:118723. doi:10.1016/j.apenergy.2022.118723.
  • Welch, C., A. Labouriau, R. Hjelm, B. Orler, C. Johnston, and Y. S. Kim. 2012. Nafion in dilute solvent systems: Dispersion or solution? ACS Macro Letters 1 (12):1403–07. doi:10.1021/mz3005204.
  • Won, M., S. Kwon, and T. H. Kim. 2015. High performance blend membranes based on sulfonated poly(arylene ether sulfone) and poly(p-benzimidazole) for PEMFC applications. Journal of Industrial and Engineering Chemistry 29:104–11. doi:10.1016/j.jiec.2015.03.022.
  • Woo, S., S. Lee, A. Z. Taning, T. H. Yang, S. H. Park, and S. D. Yim. 2020. Current understanding of catalyst/ionomer interfacial structure and phenomena affecting the oxygen reduction reaction in cathode catalyst layers of proton exchange membrane fuel cells. Current Opinion in Electrochemistry 21:289–96. doi:10.1016/j.coelec.2020.03.006.
  • Wu, A. G., J. F. Liu, G. Y. Wei, D. Liu, and L. Wang. 2022. Bipyridine polybenzimidazole ionomer with optimized electrochemical boundaries enhanced power density of high-temperature proton exchange membrane fuel cells by 2.5 times. Journal of Power Sources 545:231925. doi:10.1016/j.jpowsour.2022.231925.
  • Wu, J., L. G. A. Melo, X. Zhu, M. M. West, V. Berejnov, D. Susac, J. Stumper, and A. P. Hitchcock. 2018. 4D imaging of polymer electrolyte membrane fuel cell catalyst layers by soft X-ray spectro-tomography. Journal of Power Sources 381:72–83. doi:10.1016/j.jpowsour.2018.01.074.
  • Yadav, R., and P. S. Fedkiw. 2012. Analysis of EIS Technique and nafion 117 conductivity as a function of temperature and relative humidity. Journal of the Electrochemical Society 159 (3):B340–46. doi:10.1149/2.104203jes.
  • Yakovlev, Y. V., Y. V. Lobko, M. Vorokhta, J. Novakova, M. Mazur, I. Matolinova, and V. Matolin. 2021. Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells. Journal of Power Sources 490:229531. doi:10.1016/j.jpowsour.2021.229531.
  • Yang, P., J. Huang, J. Li, K. Luo, L. Zhang, Q. Fu, X. Zhu, and Q. Liao. 2023. Insights into the effect of drying temperature on catalyst layer structure and PEM water electrolysis performance. International Journal of Hydrogen Energy 52:170–76. doi:10.1016/j.ijhydene.2023.10.108.
  • Yang, Y., R. Tocchetto, K. Nixon, R. Sun, and Y. A. Elabd. 2022. Dehumidification via polymer electrolyte membrane electrolysis with sulfonated pentablock terpolymer. Journal of Membrane Science 658:120709. doi:10.1016/j.memsci.2022.120709.
  • Yan, X. H., Z. L. Xu, S. Yuan, A. Han, Y. Shen, X. J. Cheng, Y. W. Liang, S. Y. Shen, and J. B. Zhang. 2022. Structural and transport properties of ultrathin perfluorosulfonic acid ionomer film in proton exchange membrane fuel cell catalyst layer: A review. Journal of Power Sources 536:231523. doi:10.1016/j.jpowsour.2022.231523.
  • Yarlagadda, V., M. K. Carpenter, T. E. Moylan, R. S. Kukreja, R. Koestner, W. Gu, L. Thompson, and A. Kongkanand. 2018. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Letters 3 (3):618–21. doi:10.1021/acsenergylett.8b00186.
  • Yoshino, S., A. Shinohara, K. Kodama, and Y. Morimoto. 2020. Fabrication of catalyst layer with ionomer nanofiber scaffolding for polymer electrolyte fuel cells. Journal of Power Sources 476:228584. doi:10.1016/j.jpowsour.2020.228584.
  • Yuan, S., C. F. Zhao, X. Y. Cai, L. An, S. Y. Shen, X. H. Yan, and J. L. Zhang. 2023. Bubble evolution and transport in PEM water electrolysis: Mechanism, impact, and management. Progress in Energy and Combustion Science 96:101075. doi:10.1016/j.pecs.2023.101075.
  • Zaton, M., J. Roziere, and D. J. Jones. 2017. Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: A review. Sustainable Energy & Fuels 1 (3):409–38. doi:10.1039/c7se00038c.
  • Zhang, L. Z., H. Y. Li, and R. H. Qi. 2019. Heat and mass transfer in PEM-based electrolytic air dehumidification element with an optimized anode-side electrochemical model. International Journal of Heat and Mass Transfer 135:1152–66. doi:10.1016/j.ijheatmasstransfer.2019.02.016.
  • Zhang, X. M., Q. G. Li, C. Si, Y. J. Zhong, X. D. Wang, L. Jiao, K. Deng, Y. L. Wang, Q. X. Liu, and Y. Z. Xia. 2022. Coupling effects of water content, temperature, oxygen density, and polytetrafluoroethylene loading on oxygen transport through ionomer thin film on platinum surface in catalyst layer of proton exchange membrane fuel cell. International Journal of Hydrogen Energy 47 (6):4062–74. doi:10.1016/j.ijhydene.2021.11.019.
  • Zhang, W., S. Shironita, and M. Umeda. 2016. Electrochemical impedance spectroscopy investigation on the ionomer degradation modeling of the anode using a porous microelectrode. International Journal of Hydrogen Energy 41 (15):6526–33. doi:10.1016/j.ijhydene.2016.03.012.
  • Zhao, J., S. Shahgaldi, I. Alaefour, Q. Xu, and X. G. Li. 2018. Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells. Applied Energy 209:203–10. doi:10.1016/j.apenergy.2017.10.087.
  • Zhao, N. N., Z. Q. Shi, and F. Girard. 2022. Superior Proton Exchange Membrane Fuel Cell (PEMFC) performance using short-side-chain perfluorosulfonic acid (PFSA) membrane and Ionomer. Materials 15 (1):78. doi:10.3390/ma15010078.
  • Zhao, C. F., S. Yuan, X. J. Cheng, L. An, J. Z. Li, S. Y. Shen, J. W. Yin, X. H. Yan, and J. L. Zhang. 2023. Effect of perfluorosulfonic acid ionomer in anode catalyst layer on proton exchange membrane water electrolyzer performance. Journal of Power Sources 580:233413. doi:10.1016/j.jpowsour.2023.233413.
  • Zhou, L., Y. Q. Li, X. R. Chen, Z. Yang, S. Yang, Q. Wang, X. Y. Liu, and S. F. Lu. 2022. New insights into degradation of Fe-N-C catalyst layers: Ionomer decomposition. Journal of Materials Chemistry A 10 (38):20323–30. doi:10.1039/d2ta03669j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.