82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Two-phase flow in the gas diffusion layer with different perforation of proton exchange membrane fuel cell

, , , , , , & ORCID Icon show all
Received 17 Dec 2023, Accepted 20 Apr 2024, Published online: 05 May 2024

References

  • Uncategorized References
  • Bao, Z., Y. Li, X. Zhou, F. Gao, Q. Du, and K. Jiao. 2021. Transport properties of gas diffusion layer of proton exchange membrane fuel cells: Effects of compression. International Journal of Heat and Mass Transfer 178:121608. doi:10.1016/j.ijheatmasstransfer.2021.121608
  • Chen, C., J. Chen, H. Han, L. Chao, J. Hu, T. Niu, H. Dong. 2022. Perovskite solar cells based on screen-printed thin films. Nature 612 (7939):266–271. doi:10.1038/s41586-022-05346-0
  • Chen, Q., Z. Niu, H. Li, K. Jiao, and Y. Wang. 2021. Recent progress of gas diffusion layer in proton exchange membrane fuel cell: Two-phase flow and material properties. International Journal of Hydrogen Energy 46 (12):8640–71. doi:10.1016/j.ijhydene.2020.12.076
  • Deng, H., Y. Hou, and K. Jiao. 2019. Lattice boltzmann simulation of liquid water transport inside and at interface of gas diffusion and micro-porous layers of PEM fuel cells. International Journal of Heat and Mass Transfer 140:1074–90. doi:10.1016/j.ijheatmasstransfer.2019.05.097
  • Fangju, L., W. Wei, and W. Shuangfeng. 2021. Pore network simulations of liquid water and oxygen transport in gas diffusion layers with spatially variable wettability. Journal of Power Sources 506:230207. doi:10.1016/j.jpowsour.2021.230207
  • Fazeli, M., J. Hinebaugh, and A. Bazylak. 2015. Investigating inlet condition effects on PEMFC GDL liquid water transport through pore network modeling. Journal of the Electrochemical Society 162 (7):F661. doi:10.1149/2.0191507jes
  • Guofu, R., Q. Zhiguo, W. Xueliang, and Z. Guobin. 2023. Enhancing the performance of proton exchange membrane fuel cell using nanostructure gas diffusion layers with gradient pore structures. International Journal of Hydrogen Energy 52:1161–1172. doi:10.1016/j.ijhydene.2023.02.093
  • He, C., Q. Wen, F. Ning, M. Shen, L. He, Y. Li, B. Tian. 2023. A new integrated GDL with Wavy channel and tunneled rib for high power density PEMFC at low back pressure and wide humidity. Advanced Science 10 (28):2302928. doi:10.1002/advs.202302928
  • Jiao K.,J. Xuan,Q. Du,Z. Bao,B. Xie,B. Wang,Y. Zhao,FanL., Wang, H., Hou, Z., Huo, S., Brandon, N., Yin, Y., Guiver, M., 2021. Designing the next generation of proton-exchange membrane fuel cells.Nature595 (7867):361–369doi: 10.1038/s41586-021-03482-7
  • Jia, H., Y. Yu, B. Yin, F. Dong, X. Xie, and S. Xu. 2022. Influence of laser-perforated gas diffusion layer on mass transfer and performance of proton exchange membrane fuel cell. International Journal of Energy Research 46 (13):18634–47. doi:10.1002/er.8478
  • Liu, Q., F. Lan, J. Chen, C. Zeng, and J. Wang. 2022. A review of proton exchange membrane fuel cell water management: Membrane electrode assembly. Journal of Power Sources 517:230723. doi:10.1016/j.jpowsour.2021.230723
  • Liu, Z., J. Ma, K. Jiao, Q. Du, and F. Bai. 2023. Fabrication of high power density paper-based microfluidic fuel cell using a stepped catalyst layer. Biosensors and Bioelectronics: X 14:100345. doi:10.1016/j.biosx.2023.100345
  • Ozden, A., S. Shahgaldi, X. Li, and F. Hamdullahpur. 2019a. A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs. Progress in Energy and Combustion Science 74:50–102. doi:10.1016/j.pecs.2019.05.002
  • Ozden, A., S. Shahgaldi, X. Li, and F. Hamdullahpur. 2019b. A review of gas diffusion layers for proton exchange membrane fuel cells-with a focus on characteristics, characterization techniques, materials and designs. Progress in Energy and Combustion Science 74:50–102. doi:10.1016/j.pecs.2019.05.002
  • Park, J., H. Oh, Y. Il Lee, K. Min, E. Lee, and J.-Y. Jyoung. 2016. Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance. Applied Energy 171:200–12. doi:10.1016/j.apenergy.2016.02.132
  • Reto, F., M. Federica, S. Marco, W. Alexander, and N. Büchi Felix. 2011. Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy. Electrochimica acta 56 (5):2254–62. doi:10.1016/j.electacta.2010.12.016
  • Satjaritanun, P., J. W. Weidner, S. Hirano, Z. Lu, Y. Khunatorn, S. Ogawa, S. E. Litster, A. D. Shum, I. V. Zenyuk, and S. Shimpalee. 2017. Micro-scale analysis of liquid water breakthrough inside gas diffusion layer for PEMFC using X-ray computed tomography and lattice boltzmann method. Journal of the Electrochemical Society 164 (11):E3359. doi:10.1149/2.0391711jes
  • Shangguan, X., Y. Li, Y. Qin, S. Cao, J. Zhang, and Y. Yin. 2021. Effect of the porosity distribution on the liquid water transport in the gas diffusion layer of PEMFC. Electrochimica Acta 371:137814. doi:10.1016/j.electacta.2021.137814
  • Shi, X., D. Jiao, Z. Bao, K. Jiao, W. Chen, and Z. Liu. 2022. Liquid transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of microporous layer cracks. International Journal of Hydrogen Energy 47 (9):6247–58. doi:10.1016/j.ijhydene.2021.11.248
  • Wang, X., S. Chen, Z. Fan, W. Li, S. Wang, X. Li, Y. Zhao, T. Zhu, and X. Xie. 2017. Laser-perforated gas diffusion layer for promoting liquid water transport in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy 42 (50):29995–30003. doi:10.1016/j.ijhydene.2017.08.131
  • Wang, Z., Z. Liu, L. Fan, Q. Du, and K. Jiao. 2023. Application progress of small-scale proton exchange membrane fuel cell. Energy Reviews 2:100017. doi:10.1016/j.enrev.2023.100017
  • Wang, Z., Wang, K., K. Jiao, Q. Du, Peng, Z., F. Bai, and Z. Liu. 2024. Application of Template Method in Fabricating Ordered Gas Diffusion Layer of PEMFC. International Journal of Green Energy 1–10 doi:10.1080/15435075.2024.2332315
  • Wang, X. L., W. K. Wang, Z. G. Qu, G. F. Ren, and H. C. Wang. 2021. Surface roughness dominated wettability of carbon fiber in gas diffusion layer materials revealed by molecular dynamics simulations. International Journal of Hydrogen Energy 46 (52):26489–98. doi:10.1016/j.ijhydene.2021.05.121
  • Wang, H., Z. Wang, Z. Qu, and J. Zhang. 2023. Deep-learning accelerating topology optimization of three-dimensional coolant channels for flow and heat transfer in a proton exchange membrane fuel cell. Applied Energy 352:121889. doi:10.1016/j.apenergy.2023.121889
  • Wen, Q., S. Pan, Y. Li, C. Bai, M. Shen, H. Jin, F. Ning, X. Fu, and X. Zhou. 2022. Janus gas diffusion layer for enhanced water management in Proton Exchange Membrane Fuel Cells (PEMFCs. ACS Energy Letters 7 (11):3900–3909. doi:10.1021/acsenergylett.2c02012
  • Zhiqiang, N., W. Jingtian, B. Zhiming, W. Yun, Y. Yan, and J. Kui. 2019. Two-phase flow and oxygen transport in the perforated gas diffusion layer of proton exchange membrane fuel cell. International Journal of Heat and Mass Transfer 139:58–68. doi:10.1016/j.ijheatmasstransfer.2019.05.008
  • Zhiqiang, N., W. Yun, J. Kui, and W. Jingtian. 2018. Two-phase flow dynamics in the gas diffusion layer of proton exchange membrane fuel cells: Volume of fluid modeling and comparison with experiment. Journal of the Electrochemical Society 165 (9):F613. doi:10.1149/2.0261809jes
  • Zhou, X., L. Wu, Z. Niu, Z. Bao, X. Sun, Z. Liu, Y. Li, K. Jiao, Z. Liu, and Q. Du. 2020. Effects of surface wettability on two-phase flow in the compressed gas diffusion layer microstructures. International Journal of Heat and Mass Transfer 151:119370. doi:10.1016/j.ijheatmasstransfer.2020.119370

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.