105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

New insight of combined hydrothermal and ultrasonic pretreatment for methane production from anaerobic digestion of food waste

ORCID Icon, , &
Received 23 Nov 2023, Accepted 02 May 2024, Published online: 09 May 2024

References

  • Ahmed, S. F., M. Mofijur, N. Islam, T. A. Parisa, N. Rafa, A. Bokhari, J. J. Klemeš, and T. M. Mahlia. 2022. IndraMahlia, insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater. Energy 254:124163. doi:10.1016/j.energy.2022.124163
  • Ali, M. M., A. M. Mustafa, X. Zhang, X. Zhang, U. A. Danhassaan, H. Lin, U. Choe, K. Wang, and K. Sheng. 2022. Combination of ultrasonic and acidic pretreatments for enhancing biohythane production from tofu processing residue via one-stage anaerobic digestion. Bioresource Technology 344:126244. doi:10.1016/j.biortech.2021.126244
  • Altaş, L. 2009. Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. Journal of Hazardous Materials 162 (2–3):1551–56. doi:10.1016/j.jhazmat.2008.06.048
  • APHA. 1989. Standard methods for examination of water and wastewater. 17th ed. Washington, DC.
  • Bakraoui, M., F. Karouach, B. Ouhammou, N. Lahboubi, Y. E. Gnaoui, M. Aggour, H. E. Bari. 2020. Kinetics study of methane production from anaerobic digestion of sludge and wastewater recycled pulp and paper, Mater. Sci. Eng 13.
  • Bari, H. E., N. Lahboubi, S. Habchi, S. Rachidi, O. Bayssi, A. Y. Mortezaei, R. Villa, and R. Villa. 2022. Biohydrogen production from fermentation of organic waste, storage and applications, clean. Cleaner Waste Systems 3:100043. doi:10.1016/j.clwas.2022.100043
  • Beniche, I., H. El Bari, J. A. Siles, A. F. Chica, and M. Á. Martín. 2020. Methane production by anaerobic co-digestion of mixed agricultural waste: Cabbage and cauliflower. Environmental Technology 42 (28):4550–58. doi:10.1080/09593330.2020.1770341
  • Bernat, K., A. Cydzik-Kwiatkowska, M. Zielińska, I. Wojnowska-Baryła, and J. Wersocka. 2019. Valorisation of the selectively collected organic fractions of municipal solid waste in anaerobic digestion. Biochemical Engineering Journal 148:87–96. doi:10.1016/j.bej.2019.05.003
  • Bianco, F., H. Şenol, S. Papirio, H. Zenk, A. Kara, and S. Atasoy. 2022. Combined ultrasonic–hydrothermal pretreatment to improve the biomethane potential of hazelnut shell. Biomass and Bioenergy 165:106554. doi:10.1016/j.biombioe.2022.106554
  • Carrere, H., G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, and I. Ferrer. 2016. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresource Technology 199:386–97. doi:10.1016/j.biortech.2015.09.007
  • Chen, Y. R., A. G. Hashimoto. 1980. Substrate utilization kinetic model for biological treatment process, Biotechnol. Bioeng 22:2081–95. doi:10.1002/bit.260221008
  • Deena, S. R., A. S. Vickram, S. Manikandan, R. Subbaiya, N. Karmegam, B. Ravindran, S. W. Chang, and M. K. Awasthi. 2022. Enhanced biogas production from food waste and activated sludge using advanced techniques – A review. Bioresource Technology 355:127234. doi:10.1016/j.biortech.2022.127234
  • Deepanraj, B., V. Sivasubramanian, and S. Jayaraj. 2017. Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. International Journal of Hydrogen Energy 42 (42):26522–28. doi:10.1016/j.ijhydene.2017.06.178
  • Edwiges, T., J. A. Bastos, J. H. L. Alino, L. d’avila, L. M. Frare, and J. G. Somer. 2019. Comparison of various pretreatment techniques to enhance biodegradability of lignocellulosic biomass for methane production. Journal of Environmental Chemical Engineering 7 (6):103495. doi:10.1016/j.jece.2019.103495
  • Elalami, D., H. Carrere, K. Abdelouahdi, D. Garcia-Bernet, J. Peydecastaing, G. Vaca-Medina, A. Oukarroum, Y. Zeroual, and A. Barakat. 2020. Mild microwaves, ultrasonic and alkaline pretreatments for improving methane production: Impact on biochemical and structural properties of olive pomace. Bioresource Technology 299:122591. doi:10.1016/j.biortech.2019.122591
  • El Gnaoui, Y., A. Frimane, N. Lahboubi, C. Herrmann, M. Barz, H. E. Bari. 2022. Biological pre-hydrolysis and thermal pretreatment applied for anaerobic digestion improvement: Kinetic study and statistical variable selection, clean. Waste Syst 2:100005. doi:10.1016/j.clwas.2022.100005
  • Gnaoui, Y. E., F. Karouach, M. Bakraoui, M. Barz, and H. E. Bari. 2020. Mesophilic anaerobic digestion of food waste: Effect of thermal pretreatment on improvement of anaerobic digestion process. Energy Reports 6:417–22. doi:10.1016/j.egyr.2019.11.096
  • Habchi, S., N. Lahboubi, F. Karouach, I. Naim, Y. Lahlou, M. Bakraoui, B. Sallek, and H. El Bari. 2022. Effect of thermal pretreatment on the kinetic parameters of anaerobic digestion from recycled pulp and paper sludge, Ecol. Ecological Engineering & Environmental Technology 23 (1):192–201. doi:10.12912/27197050/143568el
  • Habchi, S., N. Lahboubi, B. Sallek, H. El Bari. 2023. Response surface methodology for anaerobic digestion of waste from poultry slaughterhouse: Optimization of load and hydraulic retention time, Results eng 18:101215. doi:10.1016/j.rineng.2023.101215
  • Haider, S., A. Lindbråthen, and M.-B. Hägg. 2016. Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology. Green Energy & Environment 1 (3):222–34. doi:10.1016/j.gee.2016.10.003
  • He, X. 2021. A novel hybrid digestion-gasification process integrated with membranes for efficient conversion of biomass to bio-alcohols. Green Energy & Environment 6 (1):15–21. doi:10.1016/j.gee.2020.04.003
  • Hernández-Fydrych, V. C., G. Benítez-Olivares, M. A. Meraz-Rodríguez, M. L. Salazar-Peláez, and M. C. Fajardo-Ortiz. 2019. Methane production kinetics of pretreated slaughterhouse wastewater. Biomass & bioenergy 130:105385. doi:10.1016/j.biombioe.2019.105385
  • Jiang, Q., Y. Chen, S. Yu, R. Zhu, C. Zhong, H. Zou, L. Gu, and Q. He. 2020. Effects of citrus peel biochar on anaerobic co-digestion of food waste and sewage sludge and its direct interspecies electron transfer pathway study. Chemical Engineering Journal 398:12. doi:10.1016/j.cej.2020.125643
  • Kafle, G. K., and L. Chen. 2016. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Management 48:492–502. doi:10.1016/j.wasman.2015.10.021
  • Karouach, F., R. Gomhaned, M. Bakraoui, Y. E. Gnaoui, O. Kerrou, N. Lahboubi, and H. El Bari. 2019. Study of ultrasonic pre-treatment effect on the methanogenic potential of University Canteen Waste, 1–3. Agadir, Morocco: IEEE. doi:10.1109/IRSEC48032.2019.9078143
  • Lahboubi, N., F. Karouach, M. Bakraoui, Y. El Gnaoui, A. Essamri, and H. El Bari. 2022. Effect of alkali-NaOH pretreatment on methane production from anaerobic digestion of date Palm Waste, Ecol. Ecological Engineering & Environmental Technology 23 (2):78–89. doi:10.12912/27197050/144846
  • Lahboubi, N., O. Kerrou, F. Karouach, M. Bakraoui, A. Schüch, K. Schmedemann, W. Stinner, H. El Bari, and A. Essamri. 2022. Methane production from mesophilic fed-batch anaerobic digestion of empty fruit bunch of palm tree, biomass convers. Biomass Conversion and Biorefinery 12 (9):3751–60. doi:10.1007/s13399-020-00864-1
  • Lahboubi, N., O. Kerrou, B. Sarh, T. Boushaki, V. Belandria, Y. El Khattabi, and H. El Bari. 2023. Comparative study of energetic potential from anaerobic digestion and direct combustion of date palm wastes. Clean Energy 7 (4):747–54. doi:10.1093/ce/zkad020
  • Leitão, A., D. Moni, and C. Maria. 2022. Anaerobic co-digestion of food waste with sewage sludge from wastewater treatment plant of Sequele, Luanda-Angola. Environmental Challenges 9:100635. doi:10.1016/j.envc.2022.100635
  • Lenzuni, M., A. Converti, and A. A. Casazza. 2024. From laboratory- to industrial-scale plants: Future of anaerobic digestion of olive mill solid wastes. Bioresource Technology 394:130317. doi:10.1016/j.biortech.2024.130317
  • Li, X., S. Guo, Y. Peng, Y. He, S. Wang, L. Li, and M. Zhao. 2018. Anaerobic digestion using ultrasound as pretreatment approach: Changes in waste activated sludge, anaerobic digestion performances and digestive microbial populations. Biochemical Engineering Journal 139:139–45. doi:10.1016/j.bej.2017.11.009
  • Li, P., W. Li, M. Sun, X. Xu, B. Zhang, and Y. Sun. 2018. Evaluation of biochemical methane potential and kinetics on the anaerobic digestion of vegetable crop residues. Energies 12 (1):26. doi:10.3390/en12010026
  • Liu, X. Y., H. B. Ding, S. Sreeramachandran, O. Stabnikova, and J. Y. Wang. 2008. Enhancement of food waste digestion in the hybrid anaerobic solid-liquid system. Water Science & Technology 57 (9):1369–73. doi:10.2166/wst.2008.081
  • Liu, X., C. Lee, and J. Y. Kim. 2020. Thermal hydrolysis pre-treatment combined with anaerobic digestion for energy recovery from organic wastes. Journal of Material Cycles & Waste Management 22 (5):1370–81. doi:10.1007/s10163-020-01025-2
  • Liu, L., T. Zhang, H. Wan, Y. Chen, X. Wang, G. Yang, and G. Ren. 2015. Anaerobic co-digestion of animal manure and wheat straw for optimized biogas production by the addition of magnetite and zeolite. Energy Conversion and Management 97:132–39. doi:10.1016/j.enconman.2015.03.049
  • Luo, T., H. Huang, Z. Mei, F. Shen, Y. Ge, G. Hu, and X. Meng. 2019. Hydrothermal pretreatment of rice straw at relatively lower temperature to improve biogas production via anaerobic digestion. Chinese Chemical Letters 30 (6):1219–23. doi:10.1016/j.cclet.2019.03.018
  • Mainardis, M., S. Flaibani, F. Mazzolini, A. Peressotti, and D. Goi. 2019. Techno-economic analysis of anaerobic digestion implementation in small Italian breweries and evaluation of biochar and granular activated carbon addition effect on methane yield. Journal of Environmental Chemical Engineering 7 (3):103184. doi:10.1016/j.jece.2019.103184
  • Meenakshisundaram, S., V. Calcagno, C. Ceballos, A. Fayeulle, E. Léonard, V. Herledan, J.-M. Krafft, Y. Millot, X. Liu, C. Jolivalt, A. Pauss. 2023. Chemically and physically pretreated straw in moderate conditions: Poor correlation between biogas production and commonly used biomass characterization, Energies 16:1146. doi:10.3390/en16031146
  • Ortiz-Sanchez, M., J. C. Solarte-Toro, and C. A. C. Alzate. 2023. Food waste valorization applying the biorefinery concept in the Colombian context: Pre-feasibility analysis of the organic kitchen food waste processing. Biochemical Engineering Journal 194:108864. doi:10.1016/j.bej.2023.108864
  • Panigrahi, S., H. B. Sharma, and B. K. Dubey. 2020. Anaerobic co-digestion of food waste with pretreated yard waste: A comparative study of methane production, kinetic modeling and energy balance. Journal of Cleaner Production 243:118480. doi:10.1016/j.jclepro.2019.118480
  • Parra-Orobio, B. A., L. M. Girón-Bol, D. F. Gómez-Muñoz, L. F. Marmolejo-Rebellón, and P. Torres-Lozada. 2021. Thermal pre-treatment as a tool for energy recovery from food waste through anaerobic digestion. Effect on kinetic and physicochemical characteristics of the substrate. Environmental Technology & Innovation 21:101262. doi:10.1016/j.eti.2020.101262
  • Parra-Orobio, B. A., A. Pérez-Vidal, and P. Torres-Lozada. 2021. Potential production of struvite from the anaerobic digestion of food waste: Analysis in one-phase and two-phase configurations. Water Science & Technology 84 (4):1048–58. doi:10.2166/wst.2021.299
  • Pilarska, A. A., T. Kulupa, A. Kubiak, A. Wolna-Maruwka, K. Pilarski, and A. Niewiadomska. 2023. Anaerobic digestion of food waste—A short review. Energies 16 (15):5742. doi:10.3390/en16155742
  • Samarasinghe, K., and P. D. C. Wijayatunga. 2022. Techno-economic feasibility and environmental sustainability of waste-to-energy in a circular economy: Sri Lanka case study, energy sustain. Energy for Sustainable Development 68:308–17. doi:10.1016/j.esd.2022.04.005
  • Shen, J., C. Wang, Y. Liu, C. Hu, Y. Xin, N. Ding, and S. Su. 2018. Effect of ultrasonic pretreatment of the dairy manure on the electricity generation of microbial fuel cell. Biochemical Engineering Journal 129:44–49. doi:10.1016/j.bej.2017.10.013
  • Sounni, F., Y. Elgnaoui, H. E. Bari, M. Merzouki, and M. Benlemlih. 2021. Effect of mixture ratio and organic loading rate during anaerobic co-digestion of olive mill wastewater and agro-industrial wastes, biomass convers. Biorefinery 13 (2):1223–29. doi:10.1007/s13399-021-01463-4
  • Souza, T. S. O., A. Carvajal, A. Donoso-Bravo, M. Peña, and F. Fdz-Polanco. 2013. ADM1 calibration using BMP tests for modeling the effect of autohydrolysis pretreatment on the performance of continuous sludge digesters. Water Research 47 (9):3244–54. doi:10.1016/j.watres.2013.03.041
  • Taherzadeh, M., and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences 9 (9):1621–51. doi:10.3390/ijms9091621
  • Thompson, T. M., B. R. Young, and S. Baroutian. 2021. Enhancing biogas production from Caribbean pelagic sargassum utilising hydrothermal pretreatment and anaerobic co-digestion with food waste. Chemosphere 275:130035. doi:10.1016/j.chemosphere.2021.130035
  • VELP. 2016. TheKjeldahl method the kjeldahl method.
  • Yan, Y., H. Chen, W. Xu, Q. He, and Q. Zhou. 2013. Enhancement of biochemical methane potential from excess sludge with low organic content by mild thermal pretreatment. Biochemical Engineering Journal 70:127–34. doi:10.1016/j.bej.2012.10.011
  • Yan, N., B. Ren, B. Wu, D. Bao, X. Zhang, and J. Wang. 2016. Multi-objective optimization of biomass to biomethane system. Green Energy & Environment 1 (2):156–65. doi:10.1016/j.gee.2016.05.001
  • Yue, L., J. Cheng, S. Tang, X. An, J. Hua, H. Dong, and J. Zhou. 2021. Ultrasound and microwave pretreatments promote methane production potential and energy conversion during anaerobic digestion of lipid and food wastes. Energy 228:120525. doi:10.1016/j.energy.2021.120525
  • Zhang, J., Y. Cui, T. Zhang, Q. Hu, Y. W. Tong, Y. He, Y. Dai, C.-H. Wang, and Y. Peng. 2021. Food waste treating by biochar-assisted high-solid anaerobic digestion coupled with steam gasification: Enhanced bioenergy generation and porous biochar production. Bioresource Technology 331:125051. doi:10.1016/j.biortech.2021.125051

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.