64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modified reconstruction of boiler numerical temperature field based on flame image feature extraction

, , , ORCID Icon &
Received 16 Feb 2024, Accepted 22 May 2024, Published online: 02 Jun 2024

References

  • Al-Bulqini, H. M., E. B. Zeidan, F. M. Okasha, and M. S. Mansour. 2023. An image processing technique for studying the flame structure using single shots of oh-PLIF diagnostics. Mansoura Engineering Journal 48 (5):5. doi:10.58491/2735-4202.3071
  • Ali, M. A., S. E. Najim, and Q. A. Rishack. 2017. Cfd analysis of a 200mw tangential gas fired furnace boiler. International Journal of Engineering Research & Technology 6 (8):184–91. doi:10.17577/IJERTV6IS080092
  • Belošević, S., I. Tomanović, N. Crnomarković, and A. Milićević. 2019. Full-scale cfd investigation of gas-particle flow, interactions and combustion in tangentially fired pulverized coal furnace. Energy 179:1036–53. doi:10.1016/j.energy.2019.05.066
  • Blondeau, J., J. Van den Auweele, S. Alimuddin, F. Binder, and F. Turoni. 2020. Online adjustment of furnace exit gas temperature field using advanced infrared pyrometry: Case study of a 1500 mw utility boiler. Case Studies in Thermal Engineering 21 (100649). doi: 10.1016/j.csite.2020.100649
  • Chaib, O., Y. Zheng, S. Hochgreb, and I. Boxx. 2023. Hybrid algorithm for the detection of turbulent flame fronts. Experiments in Fluids 64 (5). doi: 10.1007/s00348-023-03651-6
  • Chen, J., L. L. T. Chan, and Y. Cheng. 2013. Gaussian process regression based optimal design of combustion systems using flame images. Applied Energy 111:111 153–60. doi:10.1016/j.apenergy.2013.04.036
  • Chen, T., Y. Zhang, M. Liao, and W. Wang. 2019. Coupled modeling of combustion and hydrodynamics for a coal-fired supercritical boiler. Fuel 240:49–56. doi:10.1016/j.fuel.2018.11.008
  • He, K., G. Gkioxari, P. Dollár, and R. Girshick. 2017. Mask r-cnn. arxiv. doi:10.48550/arXiv.1703.06870
  • Jiang, W., T. Pan, G. Jiang, Z. Sun, H. Liu, Z. Zhou, B. Ruan, K. Yang, and X. Gao. 2023. Data-driven physical fields reconstruction of supercritical-pressure flow in regenerative cooling channel using pod-ae reduced-order model. International Journal of Heat and Mass Transfer 217 (124699). doi: 10.1016/j.ijheatmasstransfer.2023.124699
  • Kong, Q., G. Jiang, Y. Liu, and J. Sun. 2020. 3d high-quality temperature-field reconstruction method in furnace based on acoustic tomography. Applied Thermal Engineering 179 (115693). doi: 10.1016/j.applthermaleng.2020.115693
  • Lingkai, Z., and L. Li. 2020. Video flame detection method based on improved fast robust feature. Journal of Physics Conference Series 1518 (1):12065. doi:10.1088/1742-6596/1518/1/012065
  • Lou, C., and Z. Zhang. 2019. Experimental and numerical analysis of radiative entropy generation in industrial and boiler furnaces. Journal of Quantitative Spectroscopy and Radiative Transfer 232:27–34. doi:10.1016/j.jqsrt.2019.04.039
  • Lv, M., J. Zhao, S. Cao, T. Shen, and Z. Tang. 2023. Prediction of temperature distribution in a furnace using the incremental deep extreme learning machine. PeerJ Computer Science 9 (e1218). doi:10.7717/peerj-cs.1218
  • Mu, H., Z. Li, Z. Han, J. Li, H. I. Schlaberg, Shiliu, and S. Liu. 2015. Visualization measurement of the flame temperature in a power station using the colorimetric method. Energy Procedia 66:133–36. doi:10.1016/j.egypro.2015.02.075
  • Nemitallah, M. A., M. A. Nabhan, M. Alowaifeer, A. Haeruman, F. Alzahrani, M. A. Habib, M. Elshafei, M. I. Abouheaf, M. Aliyu, and M. Alfarraj. 2023. Artificial intelligence for control and optimization of boilers’ performance and emissions: A review. Journal of Cleaner Production 417 (138109). doi: 10.1016/j.jclepro.2023.138109
  • Niu, C., H. Guo, and Y. Wang, “Fast flame recognition algorithm base on segmentation network,” 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Shanghai, China, 2023, pp. 458–61, 10.1109/VRW58643.2023.00099
  • Petrucci, L., F. Ricci, R. Martinelli, and F. Mariani. 2022. Detecting the flame front evolution in spark-ignition engine under lean condition using the mask r-cnn approach. Vehicles 4 (4):978–95. doi:10.3390/vehicles4040053
  • Ronquillo-Lomeli, G., and A. García-Moreno. 2024. A machine learning-based approach for flames classification in industrial heavy oil-fire boilers. Expert Systems with Applications 238 (122188). doi:10.1016/j.eswa.2023.122188
  • Shi, Y., W. Zhong, X. Chen, A. B. Yu, and J. Li. 2019. Combustion optimization of ultra supercritical boiler based on artificial intelligence. Energy 170:804–17. doi:10.1016/j.energy.2018.12.172
  • Strušnik, D., M. Agrež, J. Avsec, and M. Golob. 2021. Optimisation of an old 200mw coal-fired boiler with urea injection through the use of supervised machine learning algorithms to achieve cleaner power generation. Journal of Cleaner Production 290 (125200). doi: 10.1016/j.jclepro.2020.125200
  • Sun, F., A. Huang, Z. Wu, W. Huang, and M. Zhang. 2022. A fast reconstruction method for temperature field based on principal component analysis and convolutional autoencoder. 2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA) 12:1–5. doi:10.1109/ISPCE-ASIA57917.2022.9971011
  • Tan, P., Q. Fang, S. Zhao, C. Yin, C. Zhang, H. Zhao, and G. Chen. 2018. Causes and mitigation of gas temperature deviation in tangentially fired tower-type boilers. Applied Thermal Engineering 139:135–43. doi:10.1016/j.applthermaleng.2018.04.131
  • Tang, Z., Y. Yang, L. Pan, M. Sui, and S. Cao. 2023. Fast prediction of heat flux distribution in boilers using computational fluid dynamics simulation data via multi-extreme learning machines. Journal of Chemical Engineering of Japan 56 (1). doi: 10.1080/00219592.2023.2260416
  • Wang, C., Y. Liu, S. Zheng, and A. Jiang. 2018. Optimizing combustion of coal fired boilers for reducing nox emission using gaussian process. Energy 153:149–58. doi:10.1016/j.energy.2018.01.003
  • Wang, Y., Y. Yu, X. Zhu, and Z. Zhang. 2020. Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology. Fuel 270 (117486). doi: 10.1016/j.fuel.2020.117486
  • Wu, Y., X. Zhou, L. Zhao, C. Dong, H. Wang, and B. Shotorban. 2021. A method for reconstruction of boiler combustion temperature field based on acoustic tomography. Mathematical Problems in Engineering 2021:1–11. doi:10.1155/2021/9922698
  • Xiong, W., “Research on Fire Detection and Image Information Processing System Based on Image Processing,” 2020 International Conference on Advance in Ambient Computing and Intelligence (ICAACI), Ottawa, ON, Canada, 2020, pp. 106–09, 10.1109/ICAACI50733.2020.00027
  • Ye, T., M. Dong, Y. Liang, J. Long, W. Li, and J. Lu. 2022. Modeling and optimization of the nox generation characteristics of the coal-fired boiler based on interpretable machine learning algorithm. International Journal of Green Energy 19 (5):529–43. doi:10.1080/15435075.2021.1947827
  • Ye, T., M. Dong, Y. Liang, J. Long, Y. Zheng, and J. Lu. 2023. Online optimization of boiler operation based on information integration and case-based reasoning. International Journal of Green Energy 20 (1):15–27. doi:10.1080/15435075.2021.2021417
  • Ye, T., M. Dong, J. Long, Y. Zheng, Y. Liang, and J. Lu. 2022. Multi-objective modeling of boiler combustion based on feature fusion and bayesian optimization. Computers & Chemical Engineering 165 (107913). doi: 10.1016/j.compchemeng.2022.107913
  • Zhang, S., G. Shen, and L. An. 2019. Online monitoring of furnace exit gas temperature in power plants. Applied Thermal Engineering 147:917–26. doi:10.1016/j.applthermaleng.2018.11.004
  • Zhou, Y., C. Zhang, X. Han, and Y. Lin. 2021. Monitoring combustion instabilities of stratified swirl flames by feature extractions of time-averaged flame images using deep learning method. Aerospace Science and Technology 109 (106443). doi: 10.1016/j.ast.2020.106443

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.