86
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancement in solar air heater with integrated PCM-based thermal energy storage system

&
Received 26 Feb 2024, Accepted 22 May 2024, Published online: 12 Jun 2024

References

  • Abdulateef, A. M., S. Mat, K. Sopian, J. Abdulateef, and A. A. Gitan. 2017. Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins, . Solar Energy 155:142–53. doi:10.1016/j.solener.2017.06.024.
  • Abed, A. H., and A. R. Abdulmunem. 2018. Investigation of combination between latent and sensible heat storage materials on the performance of flat plate solar air heater. The Iraqi Journal for Mechanical and Materials Engineering 18 (1):63–77. doi:10.32852/iqjfmme.Vol18.Iss1.73.
  • Abus¸ka, M., S. S¸evik, and A. Kayapunar. 2019a. A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater. Applied Thermal Engineering 148:684–93. doi:10.1016/j.applthermaleng.2018.11.056.
  • Abus¸ka, M., S. S¸evik, and A. Kayapunar. 2019b. Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection. Solar Energy Materials & Solar Cells 195:299–308. 10.1016/j.solmat.2019.02.040.
  • Aharwal, K. R., B. K. Gandhi, and J. S. Saini. 2008. Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renewable Energy 33 (4):585–96. doi:10.1016/j.renene.2007.03.023.
  • Ahmed, S. F., M. Khalid, W. Rashmi, A. Chan, and K. Shahbaz. 2017. Recent progress in solar thermal energy storage using nanomaterials. Renewable and Sustainable Energy Reviews 67:450–60. doi:10.1016/j.rser.2016.09.034.
  • Algarni, S., V. Tirth, A. Saxena, and P. Gupta. 2022. A comparative study of different low-cost sensible heat storage materials for solar air heating: An experimental approach. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (1):912–33. doi:10.1080/15567036.2022.2050854.
  • Ali, H., A. Bhatti, and M. Ali. 2015. An experimental investigation of performance of a double pass solar air heater with thermal storage medium. Thermal Science 19 (5):1699–708. doi:10.2298/TSCI140824140A.
  • Alkilani, M. M., K. Sopian, M. A. Alghoul, M. Sohif, and M. H. Ruslan. 2011. Review of solar air collectors with thermal storage units. Renewable and Sustainable Energy Reviews 15 (3):1476–90. doi:10.1016/j.rser.2010.10.019.
  • Alkilani, M. M., K. Sopian, and S. Mat. 2011. Transient CFD analysis of macro-encapsulated latent heat thermal energy storage containers incorporated within solar air heater. American Journal of Environmental Sciences 7:542–46.
  • Alva, G., L. Liu, X. Huang, and G. Fang. 2017. Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews 68 (February 2016):693–706. doi:10.1016/j.rser.2016.10.021.
  • Alva, G., and G. Ziskind. 2017. Cost optimization of encapsulated phase change material for solar air heating applications. Solar Energy Materials and Solar Cells 159:495–509.
  • Ameri, M., R. Sardari, and H. Farzan. 2021. Thermal performance of a V-Corrugated serpentine solar air heater with integrated PCM: A comparative experimental study. Renewable Energy 171:391–400. doi:10.1016/j.renene.2021.02.113.
  • Antony, A. L., S. P. Shetty, N. Madhwesh, N. Yagnesh Sharma, and K. Vasudeva Karanth. 2020. Influence of stepped cylindrical turbulence generators on the thermal enhancement factor of a flat plate solar air heater. Solar Energy 198:295–310. doi:10.1016/j.solener.2020.01.065.
  • Arfaoui, N., S. Bouadila, and A. Guizani. 2017. A highly efficient solution of off-sunshine solar air heating using two packed beds of latent storage energy. Solar Energy 155:1243–53. doi:10.1016/j.solener.2017.07.075.
  • Arul Kumar, R., B. Ganesh Babu, and M. Mohanraj. 2016. Thermodynamic performance of forced convection solar air heaters using pin–fin absorber plate packed with latent heat storage materials. Journal of Thermal Analysis and Calorimetry 126 (3):1657–78. doi:10.1007/s10973-016-5665-6.
  • Arunachalam, S. 2019. Latent heat storage: Container geometry, enhancement techniques, and applications—A review. Journal of Solar Energy Engineering 141 (5):050801. doi:10.1115/1.4043126.
  • Arunkumar, H. S., S. Kumar, and K. V. Karanth. 2020. Analysis of a solar air heater for augmented thermohydraulic performance using helicoidal spring shaped fins-A numerical study. Renewable Energy 160:297–311. doi:10.1016/j.renene.2020.06.098.
  • Arunkumar, H. S., K. Vasudeva Karanth, and S. Kumar. 2020. Review on the design modifications of a solar air heater for improvement in the thermal performance. Sustainable Energy Technologies and Assessments 39:100685. doi:10.1016/j.seta.2020.100685.
  • Azeem, S., and M. Zain–Ul–Abdein. 2012. Investigation of thermal conductivity enhancement in bakelite–graphite particulate filled polymeric composite. International Journal of Engineering Science 52:30–40. doi:10.1016/j.ijengsci.2011.12.002.
  • Baig, W., and H. M. Ali. 2019. An experimental investigation of performance of a double pass solar air heater with foam aluminum thermal storage medium. Case Studies in Thermal Engineering 14:100440. doi:10.1016/j.csite.2019.100440.
  • Bal, L. M., S. Satya, S. N. Naik, and V. Meda. 2011. Review of solar dryers with latent heat storage systems for agricultural products. Renewable and Sustainable Energy Reviews 15 (1):876–80. doi:10.1016/j.rser.2010.09.006.
  • Bekele, A., M. Mishra, and S. Dutta. 2013. Heat transfer augmentation in solar air heater using delta-shaped obstacles mounted on the absorber plate. International Journal of Sustainable Energy 32 (1):53–69. doi:10.1080/14786451.2011.598637.
  • Belazreg, A., A. Abderrahmane, N. A. A. Qasem, N. Sene, S. Mohammed, O. Younis, K. Guedri, N. Nasajpour-Esfahani, and D. Toghraie. 2022. Effect of Y-shaped fins on the performance of shell-and-tube thermal energy storage unit. Case Studies in Thermal Engineering 40:102485. doi:10.1016/j.csite.2022.102485.
  • Binotti, M., G. Manzolini, and G. Zhu. 2014. An alternative methodology to treat solar radiation data for the optical efficiency estimate of different types of collectors. Solar Energy 110:807–17. doi:10.1016/j.solener.2014.10.011.
  • Bouadila, S., S. Kooli, M. Lazaar, S. Skouri, and A. Farhat. 2013. Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Applied Energy 110:267–75. doi:10.1016/j.apenergy.2013.04.062.
  • Bouadila, S., M. Skouri, S. Kooli, S. Lazaar, and A. Farhat. 2013. Experimental investigation of a new solar air heater with packed-bed latent storage energy, in. Applied Energy 110:267–75. doi:10.1016/j.apenergy.2013.04.062.
  • Brinkman, H. C., and Brinkman. 1952. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics 20 (4):571–571. doi:10.1063/1.1700493.
  • Browne, M. C., B. Norton, and S. J. McCormack. 2015. Phase change materials for photovoltaic thermal management. Renewable and Sustainable Energy Reviews 47:762–82. doi:10.1016/j.rser.2015.03.050.
  • Bubnovich, V., A. Reyes, and M. D´iaz. 2019. Computational simulation of the thermal performance of a solar air heater integrated with a phase change material. Journal of Solar Energy Engineering 141 (5):1–9. doi:10.1115/1.4043549.
  • Carpio, J., and A. Valencia. 2021. Heat transfer enhancement through longitudinal vortex generators in compact heat exchangers with flat tubes. International Communications in Heat and Mass Transfer 120:105035. doi:10.1016/j.icheatmasstransfer.2020.105035.
  • Cetina-Qui˜nones, A. J., J. Xam´an, A. Bassam, M. A. Escalante Soberanis, and I. Perez-Quintana. 2021. Thermo-economic analysis of a flat solar collector with a phase changing material under tropical climate conditions: Residential and industrial case. Applied Thermal Engineering 182:116082. doi:10.1016/j.applthermaleng.2020.116082. applthermaleng.2020.116082.
  • Chaatouf, D., A. G. Ghiaus, and S. Amraqui. 2022. Optimization of a solar air heater using a phase change material for drying applications. Journal of Energy Storage 55:105513. doi:10.1016/j.est.2022.105513.
  • Chaudhari, M., S. L. Sharma, and A. Debbarma. 2023. Exergetic performance analysis of solar air heater with inverted L-shape ribs as roughness element. Archives of Thermodynamics 44 (3):1–27. doi:10.24425/ather.2023.147546.
  • Chaurasia, S., V. Goel, and A. Debbarma. 2023. Impact of hybrid roughness geometry on heat transfer augmentation in solar air heater: A review. Solar Energy 255:435–59. doi:10.1016/j.solener.2023.02.052.
  • Cheng, J., Y. Zhou, D. Ma, S. Li, F. Zhang, Y. Guan, W. Qu, Y. Jin, and D. Wang. 2020. Preparation and characterization of carbon nanotube microcapsule phase change materials for improving thermal comfort level of buildings. Construction and Building Materials 244:118388. doi:10.1016/j.conbuildmat.2020.118388.
  • Chen, Z., R. Zhu, N. Sheng, C. Zhu, and Z. Rao. 2022. Synchronously improved thermal conductivity and anti-leakage performance for phase change composite by SiC nanowires modified wood carbon. Journal of Energy Storage 47 (September 2021):103567. doi:10.1016/j.est.2021.103567.
  • Chintakrinda, K., R. D. Weinstein, and A. S. Fleischer. 2011. A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. International Journal of Thermal Sciences 50 (9):1639–47. doi:10.1016/j.ijthermalsci.2011.04.005.
  • Crespo, A., C. Barreneche, M. Ibarra, and W. Platzer. 2019. Latent thermal energy storage for solar process heat applications at medium-high temperatures – a review. Solar Energy 192:3–34. doi:10.1016/j.solener.2018.06.101.
  • Dhaidan, N. S., and J. M. Khodadadi. 2017. Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: A review. Journal of Renewable and Sustainable Energy 9 (3). doi:10.1063/1.4989738.
  • Duggal, N. 2024. Advantages and disadvantages of artificial intelligence. https://www.simplilearn.com/advantages-and-disadvantages-of-artificial-intelligence-article.
  • Dutil, Y., D. R. Rousse, N. B. Salah, S. Lassue, and L. Zalewski. 2011. A review on phase-change materials: Mathematical modeling and simulations. Renewable and Sustainable Energy Reviews 15 (1):112–30. doi:10.1016/j.rser.2010.06.011.
  • Dwivedi, A., H. Mishra, and V. Nagrath. 2021. A review on different performance enhancement techniques for solar air heaters. Recent Advances in Mechanical Engineering: Select Proceedings of ITME 2019, 1–9. doi:10.1007/978-981-15-8704-7_1.
  • Edalatpour, M., A. Kianifar, K. Aryana, and G. N. Tiwari. 2016. Energy, exergy, and cost analyses of a double-glazed solar air heater using phase change material. Journal of Renewable and Sustainable Energy 8 (1):015101. doi:10.1063/1.4940433.
  • Elbahjaoui, R., and H. E. Qarnia. 2019. Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material. International Journal of Hydrogen Energy 44 (3):2013–28. doi:10.1016/j.ijhydene.2018.11.116.
  • El Khadraoui, A., S. Bouadila, S. Kooli, A. Farhat, and A. Guizani. 2017. Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM. Journal of Cleaner Production 148:37–48. doi:10.1016/j.jclepro.2017.01.149.
  • El Khadraoui, A., S. Bouadila, S. Kooli, A. Guizani, and A. Farhat. 2016. Solar air heater with phase change material: An energy analysis and a comparative study. Applied Thermal Engineering 107:1057–64. doi:10.1016/j.applthermaleng.2016.07.004.
  • Elsayed, S. M., R. A. Sarker, and D. L. Essam. 2010. A comparative study of different variants of genetic algorithms for constrained optimization. Simulated Evolution and Learning: 8th International Conference, SEAL 2010, Kanpur, India, 177–86. Springer. December 1-4, 2010.
  • Enibe, S. O. 2002. Performance of a natural circulation solar air heating system with phase change material energy storage. Energy 27 (1):69–86. doi:10.1016/S0960-1481(01)00173-2.
  • Enibe, S. O. 2003. Thermal analysis of a natural circulation solar air heater with phase change material energy storage. Energy 28 (14):2269–99. doi:10.1016/S0960-1481(03)00071-5.
  • Fan, L. W., X. Fang, X. Wang, Y. Zeng, Y. Q. Xiao, Z. T. Yu, X. Xu, Y. C. Hu, and K. F. Cen. 2013. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Applied Energy 110:163–72. doi:10.1016/j.apenergy.2013.04.043.
  • Farzan, H., E. H. Zaim, and T. Amiri. 2022. Performance investigation on a new solar air heater using phase change material/expanded metal mesh composite as heat storage unit: An experimental study. Journal of Energy Storage 47:103602. doi:10.1016/j.est.2021.103602.
  • Fath, H. E. S. 1995. Thermal performance of a simple design solar air heater with built-in thermal energy storage system. Energy 6 (8):1033–39. doi:10.1016/0960-1481(94)00085-6.
  • Fikri, M. A., A. K. Pandey, M. Samykano, K. Kadirgama, M. George, R. Saidur, J. Selvaraj, N. A. Rahim, K. Sharma, and V. V. Tyagi. 2022. Thermal conductivity, reliability, and stability assessment of phase change material (PCM) doped with functionalized multi-wall carbon nanotubes (FMWCNTs). Journal of Energy Storage 50 (5):104676. doi:10.1016/j.est.2022.104676.
  • Frankenfield, J. 2021. Artificial Intelligence. https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp.
  • Gaidajis, G., and K. Angelakoglou. 2012. Environmental performance of renewable energy systems with the application of life-cycle assessment: A multi-Si photovoltaic module case study. Civil Engineering and Environmental Systems 29 (4):231–38. doi:10.1080/10286608.2012.710608.
  • Ghiami, A., and S. Ghiami. 2018. Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector. Applied Thermal Engineering 133:797–808. doi:10.1016/j.applthermaleng.2017.11.111.
  • Ghiami, A., A. Kianifar, K. Aryana, and M. Edalatpour. 2017. Energy and exergy analysis of a single-pass sequenced array baffled solar air heater with packed bed latent storage unit for nocturnal use. Heat Transfer-Asian Research 46 (6):546–68. doi:10.1002/htj.21230.
  • Ghosh, D., J. Ghose, P. Datta, P. Kumari, and S. Paul. 2022. Strategies for phase change material application in latent heat thermal energy storage enhancement: Status and prospect. Journal of Energy Storage 53:105179. doi:10.1016/j.est.2022.105179.
  • Goel, V., A. Dwivedi, R. Kumar, R. Kumar, A. K. Pandey, K. Chopra, and V. V. Tyagi. 2023. PCM-assisted energy storage systems for solar-thermal applications: Review of the associated problems and their mitigation strategies. Journal of Energy Storage 69:107912. doi:10.1016/j.est.2023.107912.
  • Goel, V., V. S. Hans, S. Singh, R. Kumar, S. K. Pathak, M. Singla, and R. P. Saini. 2021. A comprehensive study on the progressive development and applications of solar air heaters. Solar Energy 229:112–47. doi:10.1016/j.solener.2021.07.040.
  • Goldberg, D. E. 2006. Genetic Algorithms: Search, Optimization, and Machine Learning, Published by Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South Asia. Pearson India.
  • Gupta, A., A. Roy, S. Gupta, and M. Gupta. 2020. Numerical investigation towards implementation of punched winglet as vortex generator for performance improvement of a fin-and-tube heat exchanger. International Journal of Heat and Mass Transfer 149:1–16. doi:10.1016/j.ijheatmasstransfer.2019.119171.
  • Gupta, A. D., and L. Varshney. 2017. Performance prediction for solar air heater having rectangular sectioned tapered rib roughness using CFD. Thermal Science and Engineering Progress 4:122–32. doi:10.1016/j.tsep.2017.09.005.
  • Haldar, A., L. Varshney, and P. Verma. 2022. Effect of roughness parameters on performance of solar air heater having artificial wavy roughness using CFD. Renew. Renewable Energy 184:266–79. doi:10.1016/j.renene.2021.11.088.
  • Hatamleh, R. I., N. H. Abu-Hamdeh, and R. A. R. Bantan. 2022. Integration of a solar air heater to a building equipped with PCM to reduce the energy demand. Journal of Building Engineering 48:103948. doi:10.1016/j.jobe.2021.103948.
  • Hegde, A. K., R. Pai, and K. V. Karanth. 2023. Performance augmentation of solar air heaters: A comprehensive analysis. Solar Energy 253:527–53. doi:10.1016/j.solener.2023.01.031.
  • Holland, J. H. 1992. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. The MIT Press.
  • Huang, Z. W., X. N. Gao, T. Xu, Y. T. Fang, and Z. G. Zhang. 2014. Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material. Applied Energy 115:265–71. doi:10.1016/j.apenergy.2013.11.019.
  • Huang, Z., X. Gao, T. Xu, Y. Fang, and Z. Zhang. 2014. Thermal property measurement and heat storage analysis of LiNO3/KCl- expanded graphite composite phase change material. Energy 115:265–71. doi:10.1016/j.apenergy.2013.11.019.
  • Huang, X., F. Li, L. Lu, Z. Li, X. Yang, and J. Yan. 2023. Depth optimization of solidification properties of a latent heat energy storage unit under constant rotation mechanism. Energy and Buildings 290:113099. doi:10.1016/j.enbuild.2023.113099.
  • Islam, M. M., A. K. Pandey, M. Hasanuzzaman, and N. A. Rahim. 2016. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems. Energy Conversion and Management 126:177–204.
  • Jasyal, N. K., S. L. Sharma, and A. Debbarma. 2023. Performance analysis of solar air heater using triangular corrugated absorber under jet impingement. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (3):9063–80. doi:10.1080/15567036.2023.2230932.
  • Javadi, F. S., H. S. C. Metselaar, and P. Ganesan. 2020. Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. Solar Energy 206:330–52. doi:10.1016/j.solener.2020.05.106.
  • Jawad, Q. A., A. M. J. Mahdy, A. H. Khuder, and M. T. Chaichan. 2020. Improve the performance of a solar air heater by adding aluminum chip, paraffin wax, and nano-SiC. Case Studies in Thermal Engineering 19:100622. doi:10.1016/j.csite.2020.100622.
  • Josyula, T., S. Singh, and P. Dhiman. 2018. Numerical investigation of a solar air heater comprising longitudinally finned absorber plate and thermal energy storage system. Journal of Renewable and Sustainable Energy 10 (5):055901. doi:10.1063/1.5035136.
  • Kabeel, A. E., A. Khalil, S. M. Shalaby, and M. E. Zayed. 2016a. Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Conversion and Management 113:264–72. doi:10.1016/j.enconman.2016.01.068.
  • Kabeel, A. E., A. Khalil, S. M. Shalaby, and M. E. Zayed. 2016b. Investigation of the thermal performances of flat, finned, and v-corrugated plate solar air heaters. Journal of Solar Energy Engineering 138 (5):051004–051004–051007. doi:10.1115/1.4034027.
  • Kabeel, A. E., A. Khalil, S. M. Shalaby, and M. E. Zayed. 2017. Improvement of thermal performance of the finned plate solar air heater by using latent heat thermal storage. Applied Thermal Engineering 123:546–53. doi:10.1016/j.applthermaleng.2017.05.126.
  • Kalash, A. R., S. S. Shijer, and L. J. Habeeb. 2020. Thermal performance improvement of double pass solar air heater. Journal of Mechanical Engineering Research and Developments 43 (5):355–72.
  • Kalidasan, B., A. K. Pandey, R. Saidur, M. Samykano, and V. V. Tyagi. 2023. Nano additive enhanced salt hydrate phase change materials for thermal energy storage. International Materials Reviews 68 (2):140–83. doi:10.1080/09506608.2022.2053774.
  • Kalidasan, B., A. K. Pandey, S. Shahabuddin, M. Samykano, M. Thirugnanasambandam, and R. Saidur. 2020. Phase change materials integrated solar thermal energy systems: Global trends and current practices in experimental approaches. Journal of Energy Storage 27:101118. doi:10.1016/j.est.2019.101118.
  • Kalpana, L. Varshney, and S. Subudhi. 2022. Heat transfer and pressure drop in a double-pass solar air heater with arc-shaped artificial roughness. Journal of Solar Energy Engineering 144 (6):1–15. doi:10.1115/1.4054397.
  • Karthikeyan, R., R. A. Kumar, P. Manikandan, and A. K. Senthilnathan. 2020. Investigation of solar air heater with phase change materials using packed bed absorber plate. Today Proceedings. doi:10.1016/j.matpr.2020.06.236.
  • Kee, S. Y., Y. Munusamy, and K. S. Ong. 2018. Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Thermal Engineering 131:455–71. doi:10.1016/j.applthermaleng.2017.12.032.
  • Khan, M. M. A., N. I. Ibrahim, I. M. Mahbubul, H. M. Ali, R. Saidur, and F. A. Al-Sulaiman. 2018. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Solar Energy 166:334–50. doi:10.1016/j.solener.2018.03.014.
  • Khanlari, A., A. Do˘gus¸ Tuncer, A. S¨ozen, C. S¸irin, and A. Gungor. 2020. Energetic, environmental and economic analysis of drying municipal sewage sludge with a modified sustainable solar drying system. Solar Energy 208:787–99. doi:10.1016/j.solener.2020.08.039.
  • Krishnananth, S. S., and K. K. Murugavel. 2013. Experimental study on double pass solar air heater with thermal energy storage. Journal of King Saud University - Engineering Sciences 25 (2):135–40. doi:10.1016/j.jksues.2012.05.004.
  • Krishnan, S., and B. Sivaraman. 2017. Experimental investigations on thermal storage in a solar dryer. Energy Journal 17. Accessed August 6, 2020. https://203.159.5.126/index.php/reric/article/view/1420.
  • Kumar, R. A., B. G. Babu, and M. Mohanraj. 2017. Experimental investigations on a forced convection solar air heater using packed bed absorber plates with phase change materials. International Journal of Green Energy 14 (15):1238–55. doi:10.1080/15435075.2017.1330753.
  • Kumar, R., V. Goel, and M. Kumar. 2020. Effect of providing gap in multiple-arc rib-roughened solar air heater - part 1. Journal of Mechanical Science and Technology 34 (6):2619–25. doi:10.1007/s12206-020-0535-3.
  • Kumar, R., V. Goel, P. Singh, A. Saxena, A. Kashyap, and A. Rai. 2019. Performance evaluation and optimization of solar assisted air heater with discrete multiple arc shaped ribs. Journal of Energy Storage 26:100978. doi:10.1016/j.est.2019.100978.
  • Kumar, R., A. S. Kashyap, P. Singh, V. Goel, and K. Kumar. 2020. Innovatively arranged curved-ribbed solar-assisted air heater: Performance and correlation development for heat and flow characteristics. Journal of Solar Energy Engineering 142 (3):1–11. doi:10.1115/1.4045827.
  • Kumar, D., and L. Prasad. 2017. Heat transfer augmentation of various roughness geometry used in solar air heaters. International Journal of Mechanical Engineering and Technology 8:491–508.
  • Kumar Reji, M. S., A. K. Ngui, W. K. Pandey, B. Kalidasan, K. Kadirgama, and V. V. Tyagi. 2022. investigation of thermal performance and chemical stability of graphene enhanced phase change material for thermal energy storage. Physics and Chemistry of the Earth, Parts A/B/C 128:103250. doi:10.1016/j.pce.2022.103250.
  • Kumar Reji, A. K. P., Y. Samykano, M. Nath, K. Mohan, R. V. Sharma, and V. V. Tyagi. 2022. Effect of surfactant on functionalized multi-walled carbon nano tubes enhanced salt hydrate phase change material. Journal of Energy Storage 55 (C):105654. doi:10.1016/j.est.2022.105654.
  • Kumar, A., R. P. Saini, and J. S. Saini. 2013. Development of correlations for nusselt number and friction factor for solar air heater with roughened duct having multi v-shaped with gap rib as artificial roughness. Renewable Energy 58:151–63. doi:10.1016/j.renene.2013.03.013.
  • Kumar, S., R. Thakur, A. R. S. Suri, K. Kashyap, A. Singhy, S. Kumar, and A. Kumar. 2021. A comprehensive review of performance analysis of with and without fins solar thermal collector. Frontiers in Heat and Mass Transfer 16. doi:10.5098/hmt.16.4.
  • Kylili, A., and P. A. Fokaides. 2016. Life cycle assessment (LCA) of phase change materials (PCMs) for building applications: A review. Journal of Building Engineering 6:133–43. doi:10.1016/j.jobe.2016.02.008.
  • Lamrani, B., F. Kuznik, and A. Draoui. 2020. Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings. Renewable Energy 162:411–26. doi:10.1016/j.renene.2020.08.038.
  • Li, M., M. R. Chen, Z. S. Wu, and J. X. Liu. 2014. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material. Energy Conversion and Management 83:325–29. doi:10.1016/j.enconman.2014.04.002.
  • Ling, Z. Y., J. J. Chen, T. Xu, X. M. Fang, X. N. Gao, and Z. G. Zhang. 2015. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Conversion and Management 102:202–08. doi:10.1016/j.enconman.2014.11.040.
  • Liu, L., D. Su, Y. Tang, and G. Fang. 2016. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews 62:305–17. doi:10.1016/j.rser.2016.04.057.
  • Liu, Y., N. Wang, and Y. Ding. 2021. Preparation and properties of composite phase change material based on solar heat storage system. Journal of Energy Storage 40:102805. doi:10.1016/j.est.2021.102805.
  • Li, C., B. Zhang, B. Xie, X. Zhao, J. Chen, Z. Chen, and Y. Long. 2019. Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater. Sustainable Cities and Society 44:458–64. doi:10.1016/j.scs.2018.10.041.
  • Lu, B., Y. Zhang, D. Sun, and X. Jing. 2021. Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage. Renewable Energy 178:669–78. doi:10.1016/j.renene.2021.06.070.
  • Madhulatha, G., M. Mohan Jagadeesh Kumar, and P. Sateesh. 2021. Optimization of tube arrangement and phase change material for enhanced performance of solar air heater- a numerical analysis. Journal of Energy Storage 41:102876. doi:10.1016/j.est.2021.102876.
  • Mahdi, J. M., S. Lohrasbi, and E. C. Nsofor. 2019. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review. International Journal of Heat and Mass Transfer 137:630–49. doi:10.1016/j.ijheatmasstransfer.2019.03.111.
  • Mahdi, J. M., H. I. Mohammed, P. Talebizadehsardari, M. Ghalambaz, H. Sh Majdi, A. Khan, W. Yaïci, and D. Giddings. 2021. Simultaneous and consecutive charging and discharging of a PCM-based domestic air heater with metal foam. Applied Thermal Engineering 197:117408. doi:10.1016/j.applthermaleng.2021.117408.
  • Mahmood, A. S. 2019. Experimental study on double-pass solar air heater with and without using phase change material. Journal of Engineering 25:1–17. doi:10.31026/j.eng.2019.02.01.
  • Mahmud, A. 2009. Using a paraffin wax-aluminum compound as a thermal storage material in a solar air heater. ARPN Journal of Engineering Applied Science 4:5.
  • Majid, M. A. 2020. Renewable energy for sustainable development in India: Current status, future prospects, challenges, employment, and investment opportunities 1. 1–36.
  • Mandal, S., and S. K. Ghosh. 2020. Experimental investigation of the performance of a double pass solar water heater with reflector. Renewable Energy 149:631–40. doi:10.1016/j.renene.2019.11.160.
  • Maruoka, N., T. Tsutsumi, A. Ito, M. Hayasaka, and H. Nogami. 2020. Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer. Energy 205:118055. doi:10.1016/j.energy.2020.118055.
  • Mathew, A. A., and V. Thangavel. 2021. A novel thermal storage integrated evacuated tube heat pipe solar air heater: Energy, exergy, economic and environmental impact analysis. Solar Energy 220:828–42. doi:10.1016/j.solener.2021.03.057.
  • Maxwell, A. 2010. Treatise on electricity and magnetism. Cambridge: Cambridge University Press.
  • Mehla, N., and A. Yadav. 2017. Experimental analysis of thermal performance of evacuated tube solar air collector with phase change material for sunshine and off-sunshine hours. International Journal of Ambient Energy 38 (2):130–45. doi:10.1080/01430750.2015.1074612.
  • Menoufi, K., A. Castell, M. M. Farid, D. Boer, and L. F. Cabeza. 2013. Life cycle assessment of experimental cubicles including PCM manufactured from natural resources (esters): A theoretical study. Renewable Energy 51:398–403. doi:10.1016/j.renene.2012.10.010.
  • Michalski, R. S., J. G. Carbonell, and T. M. Mitchell. 1983. Machine learning: An artificial intelligence approach. Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-12405-5.
  • Moradi, R., A. Kianifar, and S. Wongwises. 2017. Optimization of a solar air heater with phase change materials: Experimental and numerical study, Experimental Thermal & Fluid Science 89:41–49. doi:10.1016/j.expthermflusci.2017.07.011.
  • Mostafaeipour, A., M. Alvandimanesh, F. Najafi, and A. Issakhov. 2021. Identifying challenges and barriers for development of solar energy by using fuzzy best-worst method: A case study. Energy 226:120355, July 1. doi:10.1016/j.energy.2021.120355.
  • Mourad, A., A. Aissa, Z. Said, O. Younis, M. Iqbal, and A. Alazzam. 2022. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review. Journal of Energy Storage 49:104186. doi:10.1016/j.est.2022.104186.
  • Murali, G., G. Sandeep, N. Hari, M. Praveen, and B. Neeraj. 2018. Experimental studies on solar aluminium can air heater with and without latent heat storage. International Journal of Mechanical Engineering and Technology 9:12.
  • Muthukumaran, J., and R. Senthil. 2022. Experimental performance of a solar air heater using straight and spiral absorber tubes with thermal energy storage. Journal of Energy Storage 45:103796. doi:10.1016/j.est.2021.103796.
  • Navarrete, N., R. Mondrag´on, D. Wen, M. E. Navarro, Y. Ding, and J. E. Juli´a. 2019. Thermal energy storage of molten salt-based nanofluid containing nano-encapsulated metal alloy phase change materials. Energy 167:912–20. doi:10.1016/j.energy.2018.11.037.
  • Naveenkumar, R., M. Ravichandran, V. Mohanavel, A. Karthick, L. S. R. L. Aswin, S. S. H. Priyanka, and S. P. Kumar. 2022. Review on phase change materials for solar energy storage applications. Environmental Science and Pollution Research 29 (7):9491–532. doi:10.1007/s11356-021-17152-8.
  • Nilsson, N. J. 1933. Principles of artificial intelligence, 476. Morgan Kaufmann.
  • Nomura, T., K. Tabuchi, C. Y. Zhu, N. Sheng, S. F. Wang, and T. Akiyama. 2015. High thermal conductivity phase change composite with percolating carbon fiber network. Applied Energy 154:678–85. doi:10.1016/j.apenergy.2015.05.042.
  • Ojike, O., and W. I. Okonkwo. 2019. Study of a passive solar air heater using palm oil and paraffin as storage media. Thermal Engineering 14:100454. doi:10.1016/j.csite.2019.100454.
  • Olabi, A. G., A. A. Abdelghafar, H. M. Maghrabie, E. T. Sayed, H. Rezk, M. Al Radi, and K. Obaideen, M. A. Abdelkareem. 2023. Application of artificial intelligence for prediction, optimization, and control of thermal energy storage systems. Thermal Science and Engineering Progress 39:101730. doi:10.1016/j.tsep.2023.101730.
  • Owolabi, A. L., H. H. Al-Kayiem, and A. T. Baheta. 2016. Nanoadditives induced enhancement of the thermal properties of paraffin-based nanocomposites for thermal energy storage. Solar Energy 135:644–53. doi:10.1016/j.solener.2016.06.008.
  • Oya, T., T. Nomura, M. Tsubota, N. Okinaka, and T. Akiyama. 2013. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Applied Thermal Engineering 61 (2):825–28. doi:10.1016/j.applthermaleng.2012.05.033.
  • Pandey, G., and P. Jain. 2020. Assessing the nanotechnology on the grounds of costs, benefits, and risks. Beni-Suef University Journal of Basic and Applied Sciences 9 (1):63. doi:10.1186/s43088-020-00085-5.
  • Pathak, S. K., R. Kumar, V. Goel, A. K. Pandey, and V. V. Tyagi. 2022. Recent advancements in thermal performance of nano-fluids charged heat pipes used for thermal management applications: A comprehensive review. Applied Thermal Engineering 216:119023. doi:10.1016/J.APPLTHERMALENG.2022.119023.
  • Pathak, S. K., V. V. Tyagi, K. Chopra, B. Kalidasan, A. K. Pandey, V. Goel, A. Saxena, and Z. Ma. 2023. Energy, exergy, economic and environmental analyses of solar air heating systems with and without thermal energy storage for sustainable development: A systematic review. Journal of Energy Storage 59:106521. doi:10.1016/j.est.2022.106521.
  • Pathak, S. K., V. V. Tyagi, K. Chopra, R. Rejikumar, and A. K. Pandey. 2023. Integration of emerging PCMs and nano-enhanced PCMs with different solar water heating systems for sustainable energy future: A systematic review. Solar Energy Materials & Solar Cells 254:112237. doi:10.1016/j.solmat.2023.112237.
  • Paul, J., K. Kadirgama, M. Samykano, A. K. Pandey, and V. V. Tyagi. 2022. A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials. Journal of Energy Storage 45:103415. doi:10.1016/j.est.2021.103415.
  • Prakash, C., and R. P. Saini. 2019. Heat transfer and friction in rectangular solar air heater duct having spherical and inclined rib protrusions as roughness on absorber plate. Experimental Heat Transfer 32 (5):469–87. doi:10.1080/08916152.2018.1543367.
  • Promvonge, P., P. Promthaisong, and S. Skullong. 2021. Numerical heat transfer in a solar air heater duct with punched delta-winglet vortex generators. Case Studies in Thermal Engineering 26:101088. doi:10.1016/j.csite.2021.101088.
  • Purohit, S., N. Madhwesh, K. Vasudeva Karanth, and N. Yagnesh Sharma. 2019. Heat transfer augmentation using an innovative helicoidal finned absorber plate in a solar air heater—A numerical study. Journal of Solar Energy Engineering 141 (3):1–10. doi:10.1115/1.4042071.
  • Qader, B. S., E. E. Supeni, M. K. A. Ariffin, and A. R. A. Talib. 2019. Numerical investigation of flow through inclined fins under the absorber plate of solar air heater. Renewable Energy 141:468–81. doi:10.1016/j.renene.2019.04.024.
  • Qiu, W., D. Wang, and S. Wang. 2021. Preparation and thermal performance of phase change material with high latent heat and thermal conductivity based on novel binary inorganic eutectic system. Solar Energy Materials & Solar Cells 230:111186. doi:10.1016/j.solmat.2021.111186.
  • Raj, A. K., M. Srinivas, and S. Jayaraj. 2019a. CFD modeling of macro-encapsulated latent heat storage system used for solar heating applications. International Journal of Thermal Sciences 139:88–104. doi:10.1016/j.ijthermalsci.2019.02.010.
  • Raj, A. K., M. Srinivas, and S. Jayaraj. 2019b. A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications. Thermal Engineering 146:910–20. doi:10.1016/j.applthermaleng.2018.10.055.
  • Raj, A. K., M. Srinivas, and S. Jayaraj. 2020. Transient CFD analysis of macro-encapsulated latent heat thermal energy storage containers incorporated within solar air heater. International Journal of Heat and Mass Transfer 156:119896. doi:10.1016/j.ijheatmasstransfer.2020.119896.
  • Raj, A. K., M. Srinivas, C. A. Saleel, and S. Jayaraj. 2019. Active drying of unripened bananas (Musa Nendra) in a multi-tray mixed-mode solar cabinet dryer with backup energy storage. Energy 188:1002–12. doi:10.1016/j.solener.2019.07.001.
  • Raju, G., and M. M. J. Kumar. 2021. Experimental study on solar air heater with encapsulated phase change material on its absorber plate. Energy Storage 3 (5):e256. doi:10.1002/est2.256.
  • Ramani, B. M., A. Gupta, and R. Kumar. 2010. Performance of a double pass solar air collector. Solar Energy 84 (11):1929–37. doi:10.1016/j.solener.2010.07.007.
  • Rautela, M., S. L. Sharma, V. S. Bisht, A. Debbarma, and R. Bahuguna. 2023. Numerical analysis of solar air heater roughened with B-Shape and D-Shape roughness geometry. Journal of Heat and Mass Transfer Research 10 (1):101–20. doi:10.22075/jhmtr.2023.30710.1445.
  • Reddy, S. S., V. Soni, and A. Kumar. 2019. Diurnal thermal performance characterization of a solar air heater at local and global scales integrated with thermal battery. Energy 177:144–57. doi:10.1016/j.energy.2019.04.017.
  • Regin, A. F., and M. Muthuraman. 2018. Economic analysis and feasibility study of a novel phase change material-based solar air heater. Journal of Thermal Analysis and Calorimetry 134 (2):1069–79.
  • Reji, K., M. Samykano, A. K. Pandey, K. Kadirgama, and V. V. Tyagi. 2022. A comparative study on thermophysical properties of functionalized and non-functionalized Multi-Walled Carbon Nano Tubes (MWCNTs) enhanced salt hydrate phase change materia. Solar Energy Materials & Solar Cells 240:111697. doi:10.1016/j.solmat.2022.111697.
  • Ren, F., J. Du, Y. Cai, J. Guo, Y. Liu, D. Zhang, and M. Li. 2022. Study on thermal performance of a new optimized snowflake longitudinal fin in vertical latent heat storage. Journal of Energy Storage 50:104165. doi:10.1016/j.est.2022.104165.
  • Ren, Y., C. Xu, M. Yuan, F. Ye, X. Ju, and X. Du. 2018. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid- to high-temperature thermal energy storage. Energy Conversion and Management 163 (3):50–58. doi:10.1016/j.enconman.2018.02.057.
  • Reyes, A., L. Henríquez-Vargas, R. Aravena, and F. Sepúlveda. 2015. Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM. Energy Conversion and Management 105:189–96. doi:10.1016/j.enconman.2015.07.068. enconman.2015.07.068.
  • Sadeghi, G., M. Mehrali, M. Shahi, G. Brem, and A. Mahmoudi. 2022. Progress of experimental studies on compact integrated solar collector-storage retrofits adopting phase change materials. Solar Energy 237:62–95. doi:10.1016/j.solener.2022.03.070.
  • Sajawal, M., T. U. Rehman, H. M. Ali, U. Sajjad, A. Raza, and M. S. Bhatti. 2019. Experimental thermal performance analysis of finned tube-phase change material based double pass solar air heater. Case Studies in Thermal Engineering 15:100543. doi:10.1016/j.csite.2019.100543.
  • Salih, S. M., J. M. Jalil, and S. E. Najim. 2019a. Double-pass solar air heater (DP-SAH) utilizing latent thermal energy storage (LTES). IOP Conference Series: Materials Science & Engineering 518 (3):032038. doi:10.1088/1757-899X/518/3/032038.
  • Salih, S. M., J. M. Jalil, and S. E. Najim. 2019b. Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM. Renewable Energy 143:1053–66. doi:10.1016/j.renene.2019.05.050.
  • Salih, S. M., J. M. Jalil, and S. E. Najim. 2019c. Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM. Renew. Renewable Energy 143:1053–66. doi:10.1016/j.renene.2019.05.050.
  • Salih, S. M., J. M. Jalil, and S. E. Najim. 2020. Comparative study of novel solar air heater with and without latent energy storage. Journal of Energy Storage 32:101751. doi:10.1016/j.est.2020.101751.
  • Sawhney, J. S., R. Maithani, and S. Chamoli. 2017. Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets. Applied Thermal Engineering 117:740–51. doi:10.1016/j.applthermaleng.2017.01.113.
  • Saxena, A., N. Agarwal, and E. Cuce. 2020. Thermal performance evaluation of a solar air heater integrated with helical tubes carrying phase change material. Journal of Energy Storage 30:101406. doi:10.1016/j.est.2020.101406.
  • Saxena, A., V. Tirth, and G. Srivastava. 2014. Design and performance analysis of a solar air heater with high heat storage. Distributed Generation & Alternative Energy Journal 29 (3):35–55, 37–41. doi:10.1080/21563306.2014.10879016.
  • Saxena, A., P. Verma, G. Srivastava, and N. Kishore. 2020. Design and thermal performance evaluation of an air heater with low cost thermal energy storage. Applied Thermal Engineering 167:114768. doi:10.1016/j.applthermaleng.2019.114768.
  • Shalaby, S. M., A. E. Kabeel, E. El-Bialy, and M. K. Elfakharany. 2020. Investigation and improvement of thermal performance of a solar air heater using extended surfaces through the phase change material. Journal of Solar Energy Engineering 142 (1):1–6. doi:10.1115/1.4044565.
  • Shalaby, S. M., A. Khalil, A. E. Kabeel, and M. E. Zayed. 2018. Improvement of the thermal performance of the V-corrugated plate solar air heater with pcm by using insulated upper cover during night. Proceedings of the 2018 IEEE Int. Conf, 346–50, Smart Energy Grid Eng, SEGE. doi:10.1109/SEGE.2018.8499480.
  • Sharma, P., I. H. Baek, T. Cho, S. Park, and K. B. Lee. 2011. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids. Powder Technology 208 (1):7–19. doi:10.1016/j.powtec.2010.11.016.
  • Sharma, A., R. Chauhan, M. Ali Kallio˘glu, V. Chinnasamy, and T. Singh. 2021. A review of phase change materials (PCMs) for thermal storage in solar air heating systems. Materials Today: Proceedings 44:4357–63. doi:10.1016/j.matpr.2020.10.560.
  • Sharma, S. L., and A. Debbarma. 2022. A review on thermal performance and heat transfer augmentation in solar air heater. International Journal of Sustainable Energy 41 (11):1973–2019. doi:10.1080/14786451.2022.2125518.
  • Sharma, S. L., and A. Debbarma. 2024. Experimental study of reverse flow solar air heater having perforation and delta wing on absorber plate. Energy Technology 2301246. doi:10.1002/ente.202301246.
  • Sharma, S. L., and A. Debbarma. 2024. Numerical investigation of reversed flow solar air heater roughened with circular-and triangular-shaped tubes. Journal of Solar Energy Engineering 146 (2):021003. doi:10.1115/1.4063184.
  • Sharma, A., R. Pitchumani, and R. Chauhan. 2022. Solar air heating systems with latent heat storage - a review of state-of-the-art. Journal of Energy Storage 48:104013. doi:10.1016/j.est.2022.104013.
  • Sharma, A., S. Thakur, P. Dhiman, and R. Kumar. 2024. Effect of jet-impingement and surface roughness on performance of solar air heater: Experimental study and its optimization. Expert Systems with Applications 238:122208. doi:10.1016/j.eswa.2023.122208.
  • Sharma, A., V. V. Tyagi, C. R. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renewable & Sustainable Energy Reviews 13 (2):318–45. doi:10.1016/j.rser.2007.10.005.
  • Sharol, A., A. Razak, Z. Majid, M. Azmi, and M. Tarminzi. 2020. Evaluation on the performance of cross-matrix absorber double-pass solar air heater (CMA-DPSAH) with and without thermal energy storage material. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 70 (2):37–49. doi:10.37934/arfmts.70.2.3749.
  • Sharol, A. F., A. A. Razak, Z. A. A. Majid, M. A. A. Azmi, and M. A. S. M. Tarminzi. 2019. Performance of force circulation cross-matrix absorber solar heater integrated with latent heat energy storage material. Series Materials Science and Engineering 469:012107. doi:10.1088/1757-899X/469/1/012107.
  • Sharol, A. F., A. A. Razak, Z. A. A. Majid, M. A. A. Azmi, M. A. S. M. Tarminzi, Y. H. Ming, Z. A. Zakaria, M. A. Harun, A. Fazlizan, and K. Sopian. 2022. Effect of thermal energy storage material on the performance of double-pass solar air heater with cross-matrix absorber. Journal of Energy Storage 51:104494. doi:10.1016/j.est.2022.104494. est.2022.104494.
  • Shi, J. N., M. D. Ger, Y. M. Liu, Y. C. Fan, N. T. Wen, C. K. Lin, and N. W. Pu. 2013. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon 51:365–72. doi:10.1016/j.carbon.2012.08.068.
  • Shrivastava, V., A. Yadav, and N. Shrivastava. 2021. Comparative study of the performance of double-pass and single-pass solar air heater with thermal storage. InRecent advances in mechanical engineering. ICRAME 2020. Lecture notes in mechanical engineering, ed. A. Kumar, A. Pal, S. S. Kachhwaha, and P. K. Jain. Singapore: Springer. doi:10.1007/978-981-15-9678-0_20.
  • Shu, G., T. Xiao, J. Guo, P. Wei, X. Yang, and Y. L. He. 2023. Effect of charging/discharging temperatures upon melting and solidification of PCM-metal foam composite in a heat storage tube. International Journal of Heat and Mass Transfer 201:123555. doi:10.1016/j.ijheatmasstransfer.2022.123555.
  • Singh, A. K., N. Agarwal, and A. Saxena. 2021. Effect of extended geometry filled with and without phase change material on the thermal performance of solar air heater. Journal of Energy Storage 39:102627. doi:10.1016/j.est.2021.102627.
  • Singh, S., and B. S. Negi. 2020. Numerical thermal performance investigation of phase change material integrated wavy finned single pass solar air heater. Journal of Energy Storage 32:102002. doi:10.1016/j.est.2020.102002.
  • Singh, I., and S. Singh. 2018. CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements. Solar Energy 162:442–53. doi:10.1016/j.solener.2018.01.019.
  • Sivanandam, S. N., and S. N. Deepa. 2008. Chapter 2: Genetic algorithms. Book: Introduction to genetic algorithms, 15–37. Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-73190-0_2.
  • Song, S., F. Qiu, W. Zhu, Y. Guo, Y. Zhang, Y. Ju, R. Feng, Y. Liu, Z. Chen, J. Zhou, et al. 2019. Polyethylene glycol/halloysite@Ag nanocomposite PCM for thermal energy storage: Simultaneously high latent heat and enhanced thermal conductivity. Solar Energy Materials & Solar Cells 193:237–45. doi:10.1016/j.solmat.2019.01.023.
  • Subramaniam, S. B., and R. Senthil. 2021. Heat transfer enhancement of concentrated solar absorber using hollow cylindrical fins filled with phase change material. International Journal of Hydrogen Energy 46 (43):22344–55. doi:10.1016/j.ijhydene.2021.04.061.
  • Sudhakar, P., and M. Cheralathan. 2019. Encapsulated PCM based double pass solar air heater: A comparative experimental study. Chemical Engineering Communications 208 (6):788–800. doi:10.1080/00986445.2019.1641701.
  • Summers, E. K., M. A. Antar, and J. H. Lienhard. 2012. Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification–dehumidification desalination. Solar Energy 86 (11):3417–29. doi:10.1016/j.solener.2012.07.017.
  • Sunilraj, B. A., and M. Eswaramoorthy. 2020. Materials today: Proceedings experimental study on hybrid natural circulation type solar air heater with paraffin wax based thermal storage. Materials Today: Proceedings 23:49–52. doi:10.1016/j.matpr.2019.06.381.
  • Tamna, S., S. Skullong, C. Thianpong, and P. Promvonge. 2014. Heat transfer behaviors in a solar air heater channel with multiple V-baffle vortex generators. Solar Energy 110:720–35. doi:10.1016/j.solener.2014.10.020.
  • Teamah, H. M. 2021. Techno-economic assessment of implementing a 6 MW grid connected photovoltaic system in different climate zones in Canada – a case study towards a sustainable community. International Journal of Renewable Energy Research 11 (4):1526–36.
  • Teamah, H. M., A. E. Kabeel, and M. A. Teamah. 2022. Potential retrofits in office buildings located in harsh Northern climate for better energy efficiency, cost effectiveness, and environmental impact. Process Safety and Environmental Protection 162:124–33. doi:10.1016/j.psep.2022.03.067.
  • Teamah, H. M., M. F. Lightstone, and J. S. Cotton. 2017. Numerical investigation and nondimensional analysis of the dynamic performance of a thermal energy storage system containing phase change materials and liquid water. Journal of Solar Energy Engineering, Transactions of the ASME 139 (2):021004. doi:10.1115/1.4034642.
  • Teamah, H. M., and M. Teamah. 2022. Integration of phase change material in flat plate solar water collector: A state of the art, opportunities, and challenges. Journal of Energy Storage 54:105357. doi:10.1016/j.est.2022.105357.
  • Teng, T. P. 2013. Thermal conductivity and phase-change properties of aqueous alumina nanofluid. Energy Conversion and Management 67:369–75. doi:10.1016/j.enconman.2012.12.004.
  • Thakur, A., R. Kumar, S. Kumar, and P. Kumar. 2021. Review of developments on flat plate solar collectors for heat transfer enhancements using phase change materials and reflectors. Materials Today: Proceedings 45 (6):5449–55. doi:10.1016/j.matpr.2021.02.120.
  • Tian, H. Q., W. L. Wang, J. Ding, X. L. Wei, M. Song, and J. P. Yang. 2015. Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites. Applied Energy 148:87–92. doi:10.1016/j.apenergy.2015.03.020.
  • Tyagi, V. V., D. K. Nagilla, J. Selvaraj, K. Chopra, R. Kothari, and A. K. Pandey. 2021. Thermal energy storage in phase change material integrated solar collectors for air heating application. IOP Conference Series: Materials Science & Engineering 1127 (1):012006. doi:10.1088/1757-899X/1127/1/012006.
  • Tyagi, V. V., N. L. Panwar, N. A. Rahim, and R. Kothari. 2012. Review on solar air heating system with and without thermal energy storage system. Renewable and Sustainable Energy Reviews 16 (4):2289–303. doi:10.1016/j.rser.2011.12.005.
  • van Someren, M., and I. D. I. E. I. Artificial. 1993. MLnet workshop on learning and problem solving: Artificial intelligence research institute IIIA-CSIC, Blanes, Spain. September 23, 1993.
  • Varun, R. P. Saini and S. K. Singal. 2008. Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate. Renewable Energy 33 (6):1398–405. doi:10.1016/j.renene.2007.07.013.
  • Velmurugan, P., and R. Kalaivanan. 2015. Thermal performance studies on multi-pass flat-plate solar air heater with longitudinal fins: An analytical approach. Arabian Journal for Science & Engineering 40 (4):1141–50. doi:10.1007/s13369-015-1573-5.
  • Velmurugan, P., and R. Kalaivanan. 2016. Energy and exergy analysis in double-pass solar air heater. Sadhana. doi:10.1007/s12046-015-0456-5.
  • Velmurugan, K., S. Kumarasamy, T. Wongwuttanasatian, and V. Seithtanabutara. 2021. Review of PCM types and suggestions for an applicable cascaded PCM for passive PV module cooling under tropical climate conditions. Journal of Cleaner Production 293:126065. doi:10.1016/j.jclepro.2021.126065.
  • Vengadesan, E., and R. Senthil. 2020. A review on recent developments in thermal performance enhancement methods of flat plate solar air collector. Renewable and Sustainable Energy Reviews 134:110315. doi:10.1016/j.rser.2020.110315.
  • Verma, S. K., K. Sharma, N. K. Gupta, P. Soni, and N. Upadhyay. 2020. Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector. Energy 194:116853. doi:10.1016/j.energy.2019.116853.
  • Verma, G., and S. Singh. 2021. Computational multiphase iterative solution procedure for thermal performance investigation of phase change material embedded parallel flow solar air heater. Journal of Energy Storage 39:102642. doi:10.1016/j.est.2021.102642.
  • Verma, G., S. Singh, S. Chander, and P. Dhiman. 2022. Numerical investigation on transient thermal performance predictions of phase change material embedded solar air heater. Journal of Energy Storage 47:103619. doi:10.1016/j.est.2021.103619.
  • Wadhawan, A., A. S. Dhoble, and V. B. Gawande. 2018. Analysis of the effects of use of thermal energy storage device (TESD) in solar air heater. Alexandria Engineering Journal 57 (3):1173–83. doi:10.1016/j.aej.2017.03.016.
  • Wang, Z., Y. Diao, Y. Zhao, C. Chen, L. Liang, and T. Wang. 2019. Thermal performance investigation of an integrated collector–storage solar air heater on the basis of lap joint-type flat micro-heat pipe arrays: Simultaneous charging and discharging mode. Energy 181:882–96. doi:10.1016/j.energy.2019.05.197.
  • Wang, Z., Y. Diao, Y. Zhao, C. Chen, L. Liang, and T. Wang. 2020. Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays. Applied Energy 261:114466. doi:10.1016/j.apenergy.2019.114466.
  • Wang, X. L., Q. G. Guo, J. Z. Wang, Y. J. Zhong, L. Y. Wang, X. H. Wei, and L. Liu. 2013. Thermal conductivity enhancement of form–stable phase–change composites by milling of expanded graphite, micro–capsules and polyethylene. Renew Energy 60:506–09. doi:10.1016/j.renene.2013.05.038.
  • Wang, L., Y. Lei, B. Du, Y. Li, and J. Sun. 2023. Performance enhancement of a horizontal latent thermal energy storage unit with elliptical fins. Applied Thermal Engineering 225:120191. doi:10.1016/j.applthermaleng.2023.120191.
  • Wang, J. F., H. Q. Xie, Z. Xin, Y. Li, and L. F. Chen. 2010. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Solar Energy 84 (2):339–44. doi:10.1016/j.solener.2009.12.004.
  • Wang, T., Y. Zhao, Y. Diao, C. Ma, Y. Zhang, and X. Lu. 2021. Experimental investigation of a novel thermal storage solar air heater (TSSAH) based on flat micro-heat pipe arrays. Renewable Energy 173:639–51. doi:10.1016/j.renene.2021.04.027.
  • Weiss, W., and M. Spörk-Dür. 2020. Solar heat worldwide. Global market development and trends in 2019. Detailed market data 2018. Printed by druck.at Druck- und Handelsgesellschaft mbH. Leobersdorf, Austria. https://www.iea-shc.org/Data/Sites/1/publications/Solar-Heat-Worldwide-2020.pdf.
  • Xiao, X., P. Zhang, and M. Li. 2014. Effective thermal conductivity of open–cell metal foams impregnated with pure paraffin for latent heat storage. International Journal of Thermal Sciences 81:94–105. doi:10.1016/j.ijthermalsci.2014.03.006.
  • Xing, M. B., J. L. Yu, and R. X. Wang. 2015. Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. International Journal of Heat and Mass Transfer 88:609–16. doi:10.1016/j.ijheatmasstransfer.2015.05.005.
  • Xu, C., H. Zhang, and G. Fang. 2022. Review on thermal conductivity improvement of phase change materials with enhanced additives for thermal energy storage. Journal of Energy Storage 51:104568. doi:10.1016/j.est.2022.104568.
  • Yang, B., J. Guo, X. Huang, Z. Li, X. Yang, and M. J. Li. 2024. Evaluation of variable rotation on enhancing thermal performance of phase change heat storage tank. International Journal of Heat and Fluid Flow 106:109328. doi:10.1016/j.ijheatfluidflow.2024.109328.
  • Yu, Q., C. Zhang, Y. Lu, Q. Kong, H. Wei, Y. Yang, Q. Gao, Y. Wu, and A. Sciacovelli. 2021. Comprehensive performance of composite phase change materials based on eutectic chloride with SiO2 nanoparticles and expanded graphite for thermal energy storage system. Renewable Energy 172:1120–32. doi:10.1016/j.renene.2021.03.061.
  • Zeng, J. L., L. X. Sun, F. Xu, Z. C. Tan, Z. H. Zhang, J. Zhang, and T. Zhang. 2007. Study of a PCM based energy storage system containing Ag nanoparticles. Journal of Thermal Analysis and Calorimetry 87 (2):371–75. doi:10.1007/s10973-006-7783-z.
  • Zhang, L., Z. Shi, B. Zhang, and J. Huang. 2020. Silver attached graphene-based aerogel composite phase change material and the enhancement of thermal conductivity. Materials (Basel) 13 (15):3271–79. doi:10.3390/MA13153271.
  • Zhang, Y., and X. Zhang. 2020. Thermal properties of a new type of calcium chloride hexahydrate-magnesium chloride hexahydrate/expanded graphite composite phase change material and its application in photovoltaic heat dissipation. Solar Energy 204:683–95. doi:10.1016/j.solener.2020.05.037.
  • Zhao, B., Y. Wang, C. Wang, R. Zhu, N. Sheng, C. Zhu, and Z. Rao. 2021. Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3. Journal of Energy Storage 42 (1):103028. doi:10.1016/j.est.2021.103028.
  • Zheng, X., X. Gao, Z. Huang, Z. Li, Y. Fang, and Z. Zhang. 2021. Form-stable paraffin/graphene aerogel/copper foam composite phase change material for solar energy conversion and storage. Solar Energy Materials & Solar Cells 226 (November 2020):111083. doi:10.1016/j.solmat.2021.111083.
  • Zhong, Y. J., M. Zhou, F. Q. Huang, T. Q. Lin, and D. Y. Wan. 2013. Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Solar Energy Materials & Solar Cells 113:195–200. doi:10.1016/j.solmat.2013.01.046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.