210
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study on acoustic matching between driver and resonator of loudspeaker-driven thermoacoustic refrigerator

, , &
Received 15 Mar 2024, Accepted 02 Jun 2024, Published online: 20 Jun 2024

References

  • Alamir, M. A. 2019. Experimental study of the stack geometric parameters effect on the resonance frequency of a standing wave thermoacoustic refrigerator. International Journal of Green Energy 16 (8):639–51. doi:10.1080/15435075.2019.1602533.
  • Alamir, M. A. 2020. Experimental study of the temperature variations in a standing wave loudspeaker driven thermoacoustic refrigerator. Thermal Science and Engineering Progress 17:100361. doi:10.1016/j.tsep.2019.100361.
  • Alcock, A. C., L. K. Tartibu, and T. C. Jen. 2018. Experimental investigation of an adjustable thermoacoustically-driven thermoacoustic refrigerator. International Journal of Refrigeration 94:71–86. doi:10.1016/j.ijrefrig.2018.07.015.
  • Bailliet, H., M. B. Pierrick Lotton, and V. Gusev. 2000. Coupling between electrodynamic loudspeakers and thermoacoustic cavities. Acta Acustica United with Acustica 86:363–73.
  • Ballaster, S. C., and D. J. McKelvey. 1995. Shipboard electronics thermoacoustic cooler. master of Science thesis, Monterey, CA: Physics Department, Naval Postgraduate School.
  • Borwick, J. 2012. Loudspeaker and headphone handbook. New York: Taylor & Francis.
  • Chen, L.-W. 2015. A theoretical and experimental study on flow characterisation in an acoustically excited chamber. Wave Motion 58:68–76. doi:10.1016/j.wavemoti.2015.07.003.
  • Chen, Z., J. Li, T. Li, T. Fan, C. Meng, C. Li, J. Kang, L. Chai, Y. Hao, Y. Tang, et al. 2022. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the omicron variant of SARS-CoV-2. National Science Review 9 (8):nwac104. doi:10.1093/nsr/nwac104.
  • Chen, G., L. Tang, B. Mace, and Z. Yu. 2021. Multi-physics coupling in thermoacoustic devices: A review. Renewable and Sustainable Energy Reviews 146:111170. doi:10.1016/j.rser.2021.111170.
  • Chen, G., L. Tang, and Z. Yu. 2022. Modeling and analysis of a dual-acoustic-driver thermoacoustic heat pump. Thermal Science and Engineering Progress 30:101270. doi:10.1016/j.tsep.2022.101270.
  • Chen, G., and J. Xu. 2021. Acoustic characteristics of looped-tube thermoacoustic refrigerators with external and in-built acoustic drivers: A comparative study. The Journal of the Acoustical Society of America 150 (6):4406–16. doi:10.1121/10.0009034.
  • David, M., X. Mao, and A. J. Jaworski. 2006. Acoustic coupling between the loudspeaker and the resonator in a standing-wave thermoacoustic device. Applied Acoustics 67 (5):402–19. doi:10.1016/j.apacoust.2005.08.001.
  • El-Rahman, A., I. Ahmed, W. A. Abdelfattah, K. S. Abdelwahed, A. Salama, A. Rabie, and A. Hamdy. 2020. A compact standing-wave thermoacoustic refrigerator driven by a rotary drive mechanism. Case Studies in Thermal Engineering 21:100708. doi:10.1016/j.csite.2020.100708.
  • Fan, L., Z. Chen, J.-J. Zhu, J. Ding, J. Xia, S.-Y. Zhang, H. Zhang, and H. Ge. 2015. Nonlinear effects in a model of a thermoacoustic refrigerator driven by a loudspeaker. Journal of Applied Physics 117 (12):124502. doi:10.1063/1.4916077.
  • Feng, H., Y. Peng, X. Zhang, and X. Li. 2018. Influence of tube geometry on the performance of standing-wave acoustic resonators. The Journal of the Acoustical Society of America 144 (3):1443–53. doi:10.1121/1.5053578.
  • Garrett, S. L., J. A. Adeff, and T. J. Hofler. 1993. Thermoacoustic refrigerator for space applications. Journal of Thermophysics and Heat Transfer 7 (4):595–99. doi:10.2514/3.466.
  • Hail, C. U., P. C. Knodel, J. H. Lang, and J. G. Brisson. 2015. A linearly-acting variable-reluctance generator for thermoacoustic engines. Energy Conversion and Management 100:168–76. doi:10.1016/j.enconman.2015.04.073.
  • Hofler, T. J. 1986. Thermoacoustic refrigerator design and performance. PhD diss., Physics Department, University of California at San Diego.
  • Jin, T., J. Huang, Y. Feng, R. Yang, K. Tang, and R. Radebaugh. 2015. Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components. Energy 93:828–53. doi:10.1016/j.energy.2015.09.005.
  • Kinsler, L. E., A. R. Frey, A. B. Coppens, and J. V. Sanders. 2000. Fundamentals of acoustics. New York: Wiley.
  • Lihoreau, B., P. Lotton, M. Bruneau, and V. Gusev. 2002. Piezoelectric source exciting thermoacoustic resonator: Analytical modelling and experiment. Acta Acustica United with Acustica 88:986–97.
  • Luo, C., X. Y. Huang, and N. T. Nguyen. 2007. Generation of shock-free pressure waves in shaped resonators by boundary driving. The Journal of the Acoustical Society of America 121 (5):2515–21. doi:10.1121/1.2713716.
  • Miller, R., and M. R. Miller. 2011. Air conditioning and refrigeration, 2nd Edition ed. New York: McGraw Hill LLC.
  • Ning, F., and X. Li. 2013. Numerical simulation of finite amplitude standing waves in acoustic resonators using finite volume method. Wave Motion 50 (2):135–45. doi:10.1016/j.wavemoti.2012.08.001.
  • Pan, N., S. Wang, and C. Shen. 2012. Visualization investigation of the flow and heat transfer in thermoacoustic engine driven by loudspeaker. International Journal of Heat and Mass Transfer 55 (25):7737–46. doi:10.1016/j.ijheatmasstransfer.2012.07.083.
  • Poese, M. E., and S. L. Garrett. 2000. Performance measurements on a thermoacoustic refrigerator driven at high amplitudes. The Journal of the Acoustical Society of America 107 (5):2480–86. doi:10.1121/1.428635.
  • Poignand, G., P. Lotton, G. Penelet, and M. Bruneau. 2011. Thermoacoustic, small cavity excitation to achieve optimal performance. Acta acustica united with acustica 97 (6):926–32. doi:10.3813/AAA.918474.
  • Poignand, G., A. Podkovskiy, G. Penelet, P. Lotton, and M. Bruneau. 2013. Analysis of a coaxial, compact thermoacoustic heat-pump. Acta acustica united with acustica 99 (6):898–904. doi:10.3813/AAA.918669.
  • Ramadan, I. A., H. Bailliet, G. Poignand, and D. Gardner. 2021. Design, manufacturing and testing of a compact thermoacoustic refrigerator. Applied Thermal Engineering 189:116705. doi:10.1016/j.applthermaleng.2021.116705.
  • Rott, N. 1980. Thermoacoustics. In Advances in applied mechanics, ed. C.-S. Yih, vol. 20, 135–75. Amsterdam: Elsevier.
  • Steiner, T. W., K. B. Antonelli, G. D. S. Archibald, B. De Chardon, K. T. Gottfried, M. Malekian, and P. Kostka. 2021. A high frequency, power, and efficiency diaphragm acoustic-to-electric transducer for thermoacoustic engines and refrigerators. The Journal of the Acoustical Society of America 149 (2):948–59. doi:10.1121/10.0003495.
  • Sun, W., G. Chen, L. Tang, and K. Chin Aw. 2023. Theoretical study on the performance of a standing-wave thermoacoustic refrigerator under various boundary conditions. In 15th International Green Energy Conference (IGEC-XV), ed. Z. Jian, K. Sambhaji, Y. Zhibin, and L. Xianguo, July 10–13, 2023, 53–64, Glasgow, UK. Glasgow, (UK): Springer Cham. doi:10.1007/978-3-031-48902-0_4.
  • Swift, G. W. 1988. Thermoacoustic engines. The Journal of the Acoustical Society of America 84 (4):1145–80. doi:10.1121/1.396617.
  • Swift, G. W. 1997. Thermoacoustic natural gas liquefier. In Report number: LA-UR-97-950; CONF-970367-3, 1–4. Research Org: Los Alamos National Lab. (LANL), Los Alamos, NM (United States), May.
  • Swift, G. W. 2017. Thermoacoustics: A unifying perspective for some engines and refrigerators, 2nd edition ed. Switzerland: Springer Cham.
  • Tijani, M. E. H. 2001. Loudspeaker-driven thermo-acoustic refrigeration. PhD diss. Department of Applied Physics, Eindhoven University of Technology.
  • Tu, Q., V. Gusev, M. Bruneau, C. Zhang, L. Zhao, and F. Guo. 2005. Experimental and theoretical investigation on frequency characteristic of loudspeaker-driven thermoacoustic refrigerator. Cryogenics 45 (12):739–46. doi:10.1016/j.cryogenics.2005.09.004.
  • Ueda, Y., and C. Kato. 2008. Stability analysis of thermally induced spontaneous gas oscillations in straight and looped tubes. The Journal of the Acoustical Society of America 124 (2):851–58. doi:10.1121/1.2939134.
  • Wakeland, R. S. 2000. Use of electrodynamic drivers in thermoacoustic refrigerators. The Journal of the Acoustical Society of America 107 (2):827–32. doi:10.1121/1.428265.
  • Wheatley, J., T. Hofler, G. W. Swift, and A. Migliori. 1983. An Intrinsically Irreversible Thermoacoustic Heat Engine. The Journal of the Acoustical Society of America 74 (1):153–70. doi:10.1121/1.389624.
  • Xiao, L., K. Luo, J. Chi, G. Chen, Z. Wu, E. Luo, and J. Xu. 2023. Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method. Applied Energy 339:120972. doi:10.1016/j.apenergy.2023.120972.