45
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Expanding the horizon of biodiesel production via enzyme engineering

, , , &
Received 13 Feb 2024, Accepted 09 Jun 2024, Published online: 18 Jun 2024

References

  • Albayati, S. H., M. Masomian, S. N. H. Ishak, A. T. C. Leow, M. S. M. Ali, F. M. Shariff, N. D. M. Noor, and R. N. Z. R. A. Rahman. 2023. Altering the regioselectivity of T1 lipase from geobacillus zalihae toward Sn-3 acylglycerol using a rational design approach. Catalysts 13 (2):416. doi:10.3390/catal13020416.
  • Anderson, E. M., K. M. Larsson, and O. Kirk. 1998. One biocatalyst–many applications: The use of candida antarctica B-Lipase in organic synthesis. Biocatalysis and Biotransformation 16 (3):181–204. doi:10.3109/10242429809003198.
  • Basumatary, B., A. Atmanli, M. Azam, S. F. Basumatary, S. Brahma, B. Das, S. Brahma, S. L. Rokhum, K. Min, M. Selvaraj, et al. 2024. Catalytic efficacy, kinetic, and thermodynamic studies of biodiesel synthesis using musa AAA plant waste-based renewable catalyst. International Journal of Energy Research 2024:1–27. doi:10.1155/2024/8837343.
  • Beklemishev, A. B., M. B. Pykhtina, L. V. Perminova, and G. A. Kovalenko. 2022. Recombinant strains producing thermomyces lanuginosus thermostable lipase and their use in heterogeneous biocatalysis, including processes of low-temperature synthesis of esters. Applied Biochemistry and Microbiology 58 (8):887–98. doi:10.1134/S0003683822080026.
  • Bento, H. B. S., C. E. R. Reis, P. A. Pinto, D. V. Cortez, R. N. Vilas BôBôAs, T. A. Costa-Silva, A. K. F. Carvalho, and H. F. de Castro. 2022. Continuous synthesis of biodiesel from outstanding kernel oil in a packed bed reactor using burkholderia cepacia lipase immobilized on magnetic nanosupport. Catalysis Letters 152 (8):2434–44. doi:10.1007/s10562-021-03826-y.
  • Brady, L., A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson, S. Tolley, J. P. Turkenburg, L. Christiansen, B. Huge-Jensen, L. Norskov, et al. 1990. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343 (6260). doi:10.1038/343767a0.
  • Brocca, S., F. Secundo, M. Ossola, L. Alberghina, G. Carrea, and M. Lotti. 2003. Sequence of the lid affects activity and specificity of candida rugosa lipase isoenzymes. Protein Science 12 (10):2312–19. doi:10.1110/ps.0304003.
  • Broel, N., M. A. Sowa, J. Manhard, A. Siegl, E. Weichhard, H. Zorn, B. Li, and M. Gand. 2022. Altering the chain length specificity of a lipase from pleurotus citrinopileatus for the application in cheese making. Foods 11 (17). doi:10.3390/foods11172608.
  • Cai, X., J. W. Shen, Y. Qiang, J. Hua, Z. Q. Ma, Z. Q. Liu, and Y. G. Zheng. 2022. Efficient activity enhancement of a lipase from sporisorium reilianum for the synthesis of a moxifloxacin chiral intermediate via rational design. Engineering 19:207–16. doi:10.1016/j.eng.2022.03.020.
  • Canakci, M., and H. Sanli. 2008. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology and Biotechnology 35 (5):431–41. doi:10.1007/s10295-008-0337-6.
  • Carrasco-López, C., C. Godoy, B. de las Rivas, G. Fernández-Lorente, J. M. Palomo, J. M. Guisán, R. Fernández-Lafuente, M. Martínez-Ripoll, and J. A. Hermoso. 2009. Activation of bacterial thermo alkalophilic lipases is spurred by dramatic structural rearrangements. Journal of Biological Chemistry 284 (7). doi:10.1074/jbc.M808268200.
  • Carvalho, W. C. A., J. H. H. Luiz, R. Fernandez-Lafuente, D. B. Hirata, and A. A. Mendes. 2021. Eco-friendly production of trimethylolpropane triesters from refined and used soybean cooking oils using an immobilized low-cost lipase (eversa>® transform 2.0) as heterogeneous catalyst. Biomass and Bioenergy 155:106302. doi:10.1016/j.biombioe.2021.106302.
  • Castillo, E., L. Casas-Godoy, and G. Sandoval. 2016. Medium-engineering: A useful tool for modulating lipase activity and selectivity. Biocatalysis 1 (1). doi: 10.1515/boca-2015-0013.
  • Cavali, M., A. Bueno, A. P. Fagundes, W. L. Priamo, D. Bilibio, G. M. Mibielli, J. H. C. Wancura, J. P. Bender, and J. V. Oliveira. 2020. Liquid lipase-mediated production of biodiesel from agroindustrial waste. Biocatalysis and Agricultural Biotechnology 30:30. doi:10.1016/j.bcab.2020.101864.
  • Chakravorty, D., S. Parameswaran, V. K. Dubey, and S. Patra. 2012. Unraveling the rationale behind organic solvent stability of lipases. Applied Biochemistry and Biotechnology 167 (3):439–61. doi:10.1007/s12010-012-9669-9.
  • Chang, M. Y., E. S. Chan, and C. P. Song. 2021. Biodiesel production catalysed by low-cost liquid enzyme eversa® transform 2.0: Effect of free fatty acid content on lipase methanol tolerance and kinetic model. Fuel 283. doi:10.1016/j.fuel.2020.119266.
  • Chica, R. A., N. Doucet, and J. N. Pelletier. 2005. Semi-rational approaches to engineering enzyme activity: Combining the benefits of directed evolution and rational design. Current Opinion in Biotechnology 16 (4):378–84. doi:10.1016/j.copbio.2005.06.004.
  • Chilakamarry, C. R., A. M. M. Sakinah, and A. W. Zularisam. 2022. Opportunities of biodiesel industry waste conversion into value-added products. Materials Today: Proceedings 57:1014–20. doi:10.1016/j.matpr.2021.08.248.
  • Chintagavongse, N., H. Takiguchi, C. Ming-Hsuan, K. Tamano, T. Hayakawa, J. I. Wakamatsu, T. Mitani, and H. Kumura. 2022. A study of lipolysis induced by adjuncts from edible aspergillus sp. solid culture products on ripened semi-hard cheese. Journal of the Science of Food and Agriculture 102 (10). doi:10.1002/jsfa.11789.
  • Choudhary, P., M. Waseem, S. Kumar, N. Subbarao, S. Srivastava, and H. Chakdar. 2023. Y12F mutation in pseudomonas plecoglossicida S7 lipase enhances its thermal and PH stability for industrial applications: A combination of in silico and in vitro study. World Journal of Microbiology and Biotechnology 39:3. doi:10.1007/s11274-023-03518-2.
  • Chow, J. Y., and G. K. T. Nguyen. 2022. Rational design of lipase ROL to increase its thermostability for production of structured tags. International Journal of Molecular Sciences 23 (17):9515. doi:10.3390/ijms23179515.
  • Coppini, M., J. D. Magro, R. Martello, A. Valério, M. C. Zenevicz, D. De Oliveira, and J. V. Oliveira. 2019. Production of methyl esters by enzymatic hydroesterification of chicken fat industrial residue. Brazilian Journal of Chemical Engineering 36 (2). doi:10.1590/0104-6632.20190362s20180389.
  • Costa, M. J., M. R. L. Silva, E. E. A. Ferreira, A. K. F. Carvalho, R. C. Basso, E. B. Pereira, H. F. de Castro, A. A. Mendes, and D. B. Hirata. 2020. Enzymatic biodiesel production by hydroesterification using waste cooking oil as feedstock. Chemical Engineering & Processing - Process Intensification 157:108131. doi:10.1016/j.cep.2020.108131.
  • Cruz, M., M. F. Almeida, M. D. C. Alvim-Ferraz, and J. M. Dias. 2019. Monitoring enzymatic hydroesterification of low-cost feedstocks by Fourier transform infrared spectroscopy. Catalysts 9 (6):535. doi:10.3390/catal9060535.
  • Cui, R., X. Che, L. Li, D. Sun-Waterhouse, J. Wang, and Y. Wang. 2022. Engineered Lipase from janibacter sp. with high thermal stability to efficiently produce long-medium-long triacylglycerols. LWT 165. doi:10.1016/j.lwt.2022.113675.
  • Cui, R., L. Xu, D. Lan, B. Yang, and Y. Wang. 2022. A novel sn-1,3 specific lipase from janibacter sp. as catalysts for the high-yield synthesis of long-medium-long type structured triacylglycerols. Food Chemistry 366. doi:10.1016/j.foodchem.2021.130523.
  • Domingues, O., D. Remonatto, L. K. dos Santos, J. P. M. Galán, D. L. Flumignan, and A. V. de Paula. 2022. Evaluation of Candida Rugosa Lipase Immobilized on Magnetic Nanoparticles in Enzymatic/Chemical Hydroesterification for Biodiesel Production. Applied Biochemistry and Biotechnology 194 (11):5419–42. doi:10.1007/s12010-022-04046-9.
  • Dror, A., E. Shemesh, N. Dayan, and A. Fishman. 2014. Protein engineering by random mutagenesis and structure-guided consensus of geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Applied and Environmental Microbiology 80 (4):1515–27. doi:10.1128/AEM.03371-13.
  • Eddehech, A., R. Rahier, N. Smichi, Y. Arhab, A. Noiriel, A. Abousalham, A. Sayari, and Z. Zarai. 2021. Heterologous expression, kinetic characterization and molecular modeling of a new sn-1, 3-regioselective triacylglycerol lipase from Serratia sp. W3. Process Biochemistry 103:87–97. doi:10.1016/j.procbio.2021.02.009.
  • Fang, Y., F. Liu, Y. Shi, T. Yang, Y. Xin, Z. Gu, G. Shi, and L. Zhang. 2023. N-Terminal Lid Swapping Contributes to the Substrate Specificity and Activity of Thermophilic Lipase TrLipE. Frontiers in Microbiology 14. doi:10.3389/fmicb.2023.1193955.
  • Fernandez, L., L. Fernandez, O. Bañuelos, A. Zafra, C. Ronchel, I. Perez-Victoria, J. C. Morales, L. Fernandez, O. Bañuelos, A. Zafra, et al. 2008. Alteration of substrate specificity of galactomyces geotrichum BT107 Lipase I on eicosapentaenoic acid-rich triglycerides. Biocatalysis and Biotransformation 26 (4). doi:10.1080/10242420801897650.
  • Fernandez-Lopez, L., S. Roda, A. Robles-Martín, R. Muñoz-Tafalla, D. Almendral, M. Ferrer, and V. Guallar. 2023. Enhancing the hydrolytic activity of a lipase towards larger triglycerides through lid domain engineering. International Journal of Molecular Sciences 24 (18). doi:10.3390/ijms241813768.
  • Filić, Ž., A. Bielen, E. Šarić, M. Ćehić, I. Crnolatac, S. Tomić, D. Vujaklija, and M. Abramić. 2024. Evaluation of the structure–function relationship of SGNH lipase from Streptomyces rimosus by site-directed mutagenesis and computational approach. International Journal of Molecular Sciences 25 (1). Multidisciplinary Digital Publishing Institute (MDPI). doi:10.3390/ijms25010595.
  • Fjerbaek, L., K. V. Christensen, and B. Norddahl. 2009. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnology and Bioengineering 102 (5):1298–315. doi:10.1002/bit.22256.
  • García-Silvera, E. E., F. Martínez-Morales, B. Bertrand, D. Morales-Guzmán, N. S. Rosas-Galván, R. León-Rodríguez, and M. R. Trejo-Hernández. 2018. Production and application of a thermostable lipase from serratia marcescens in detergent formulation and biodiesel production. Biotechnology and Applied Biochemistry 65 (2). doi:10.1002/bab.1565.
  • Gihaz, S., Y. Bash, I. Rush, A. Shahar, Y. Pazy, and A. Fishman. 2020. Bridges to stability: Engineering disulfide bonds towards enhanced lipase biodiesel synthesis. ChemCatchem 12 (1):181–92. doi:10.1002/cctc.201901369.
  • Godoy, C. A., J. S. Pardo-Tamayo, and O. Barbosa. 2022. Microbial lipases and their potential in the production of pharmaceutical building blocks. International Journal of Molecular Sciences 23 (17):9933. doi:10.3390/ijms23179933.
  • Guan, L., Y. Gao, J. Li, K. Wang, Z. Zhang, S. Yan, N. Ji, Y. Zhou, and S. Lu. 2020. Directed Evolution of Pseudomonas Fluorescens lipase variants with improved thermostability using error-prone PCR. Frontiers in Bioengineering and Biotechnology 8. doi:10.3389/fbioe.2020.01034.
  • Guo, J., S. Sun, and J. Liu. 2020. Conversion of waste frying palm oil into biodiesel using free lipase a from candida antarctica as a novel catalyst. Fuel 267. doi:10.1016/j.fuel.2020.117323.
  • Gupta, S., P. B. Mazumder, D. Scott, and M. Ashokkumar. 2020. Ultrasound-assisted production of biodiesel using engineered methanol tolerant proteus vulgaris lipase immobilized on functionalized polysulfone beads. Ultrasonics Sonochemistry 68. doi:10.1016/j.ultsonch.2020.105211.
  • Hamdan, S. H., J. Maiangwa, M. S. M. Ali, Y. M. Normi, S. Sabri, and T. C. Leow. 2021. Thermostable lipases and their dynamics of improved enzymatic properties. Applied Microbiology and Biotechnology 105 (19):7069–94. doi:10.1007/s00253-021-11520-7.
  • Hamdan, S. H., J. Maiangwa, N. G. Nezhad, M. S. M. Ali, Y. M. Normi, F. M. Shariff, R. N. Z. R. A. Rahman, and T. C. Leow. 2023. Knotting terminal ends of mutant T1 lipase with disulfide bond improved structure rigidity and stability. Applied Microbiology and Biotechnology 107 (5–6):1673–86. doi:10.1007/s00253-023-12396-5.
  • Han, N., M. Tang, S. Wan, Z. Jiang, Y. Yue, X. Zhao, J. Yang, and Z. Huang. 2021. Surface charge engineering of thermomyces lanuginosus lipase improves enzymatic activity and biodiesel synthesis. Biotechnology Letters 43 (7):1403–11. doi:10.1007/s10529-021-03126-w.
  • Hasan, W. A. N. B. W., N. G. Nezhad, M. A. Yaacob, A. B. Salleh, R. N. Z. R. A. Rahman, and T. C. Leow. 2024. Shifting the PH Profiles of Staphylococcus Epidermidis Lipase (SEL) and Staphylococcus Hyicus Lipase (SHL) through generating chimeric lipases by DNA shuffling strategy. World Journal of Microbiology and Biotechnology 40 (4). doi:10.1007/s11274-024-03927-x.
  • Hasnaoui, I., A. Dab, S. Mechri, H. Abouloifa, E. Saalaoui, B. Jaouadi, A. Noiriel, A. Asehraou, and A. Abousalham. 2022. Purification, biochemical and kinetic characterization of a novel alkaline Sn-1,3-regioselective triacylglycerol lipase from penicillium crustosum Thom strain P22 isolated from Moroccan olive mill wastewater. International Journal of Molecular Sciences 23 (19). doi:10.3390/ijms231911920.
  • Hidalgo, A., A. Schließmann, R. Molina, J. Hermoso, and U. T. Bornscheuer. 2008. A one-pot, simple methodology for cassette randomisation and recombination for focused directed evolution. Protein Engineering, Design and Selection 21 (9). doi:10.1093/protein/gzn034.
  • Huang, J., J. Wang, Z. Huang, T. Liu, and H. Li. 2023. Photothermal technique-enabled ambient production of microalgae biodiesel: Mechanism and life cycle assessment. Bioresource Technology 369. doi:10.1016/j.biortech.2022.128390.
  • Huang, J., X. Xie, W. Zheng, L. Xu, J. Yan, Y. Wu, M. Yang, and Y. Yan. 2024. In silico design of multipoint mutants for enhanced performance of thermomyces lanuginosus lipase for efficient biodiesel production. Biotechnology for Biofuels and Bioproducts 17 (1). doi: 10.1186/s13068-024-02478-5.
  • Huang, L., D. Zheng, Y. Zhao, J. Ma, Y. Li, Z. Xu, M. Shan, S. Shao, Q. Guo, J. Zhang, et al. 2019. Improvement of the alkali stability of penicillium cyclopium lipase by error-prone PCR. Electronic Journal of Biotechnology 39. doi:10.1016/j.ejbt.2019.04.002.
  • Inayat, A., A. M. Nassef, H. Rezk, E. T. Sayed, M. A. Abdelkareem, and A. G. Olabi. 2019. Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30. Science of the Total Environment 666:821–27. doi:10.1016/j.scitotenv.2019.02.321.
  • Irianto, V. S., E. Demirkan, and A. A. Cetinkaya. 2023. UV mutagenesis for lipase overproduction from Bacillus Cereus ATA179, nutritional optimization, characterization and its usability in the detergent industry. Preparative Biochemistry and Biotechnology. doi:10.1080/10826068.2023.2299441.
  • Ishak, S. N., N. H. Ahmad Kamarudin, M. S. Mohamad Ali, A. T. Chor Leow, and R. N. Z. R. Raja Noor Zaliha. 2020. Ion-pair interaction and hydrogen bonds as main features of protein thermostability in mutated T1 recombinant lipase originating from geobacillus zalihae. Oxycedrus Needles and Berries Molecules 25 (15):3430. doi:10.3390/molecules25153430.
  • Ishak, S. N. H., S. N. A. Mohamad Aris, K. B. A. Halim, M. S. M. Ali, T. C. Leow, N. H. A. Kamarudin, M. Masomian, and R. N. Z. R. A. Rahman. 2017. Molecular dynamic simulation of space and earth-grown crystal structures of thermostable T1 lipase geobacillus zalihae revealed a better structure. Oxycedrus Needles and Berries Molecules 22 (10). doi:10.3390/molecules22101574.
  • Ismail, A. R., H. Kashtoh, and K. H. Baek. 2021. Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. International Journal of Biological Macromolecules 187:127–42. doi:10.1016/j.ijbiomac.2021.07.101.
  • Iversen, J. F., S. S. R. Bohr, H. D. Pinholt, M. E. Moses, L. Iversen, S. M. Christensen, N. S. Hatzakis, and M. Zhang. 2023. Single-particle tracking of thermomyces lanuginosus lipase reveals how mutations in the lid region remodel its diffusion. Biomolecules 13 (4):631. doi:10.3390/biom13040631.
  • Jiang, Z., C. Zhang, M. Tang, B. Xu, L. Wang, W. Qian, J. He, Z. Zhao, Q. Wu, Y. Mu, et al. 2020. Improving the thermostability of rhizopus chinensis lipase through site-directed mutagenesis based on b-factor analysis. Frontiers in Microbiology 11. doi:10.3389/fmicb.2020.00346.
  • Jiao, L., W. Li, Y. Li, Q. Zhou, M. Zhu, G. Zhao, H. Zhang, and Y. Yan. 2023. Employing Engineered enolase promoter for efficient expression of thermomyces lanuginosus lipase in yarrowia lipolytica via a self-excisable vector. International Journal of Molecular Sciences 24 (1):719. doi:10.3390/ijms24010719.
  • Júnior, J. G. G., F. R. Mattos, G. J. Sabi, W. C. Carvalho, J. H. Luiz, É. C. Cren, R. Fernandez-Lafuente, and A. A. Mendes. 2022. Design of a sustainable process for enzymatic production of ethylene glycol diesters via hydroesterification of used soybean cooking oil. Journal of Environmental Chemical Engineering 10 (1):107062. doi:10.1016/j.jece.2021.107062.
  • Kaur, P., and A. K. Jana. 2023. Candida rugosa lipase immobilization on Fe3O4 coated carboxyl functionalised multiwalled carbon nanotubes for production of food flavour esters. Biotechnology and Bioprocess Engineering 28 (2). doi:10.1007/s12257-022-0296-1.
  • Kim, B. H., J. Hwang, and C. C. Akoh. 2023. Liquid microbial lipase — recent applications and expanded use through immobilization. Current Opinion in Food Science 50:100987. doi:10.1016/j.cofs.2023.100987.
  • Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology 86 (10):1059–70. doi:10.1016/j.fuproc.2004.11.002.
  • Ko, H., M. J. Kim, H. J. Kim, J. Kang, H. Y. Lee, J. H. Lee, J. H. Bae, B. H. Sung, and J. H. Sohn. 2023. Efficient valorization of food waste oils to renewable biodiesel by a candida antarctica lipase B mutant that catalyzes the ester synthesis reaction in the presence of water. Journal of Cleaner Production 428 (November):139336. doi:10.1016/j.jclepro.2023.139336.
  • Korman, T. P., B. Sahachartsiri, D. M. Charbonneau, G. L. Huang, M. Beauregard, and J. U. Bowie. 2013. Dieselzymes: Development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnology for Biofuels 6 (1). doi: 10.1186/1754-6834-6-70.
  • Kovalenko, G., L. Perminova, M. Pykhtina, and A. Beklemishev. 2021. Lipase-active heterogeneous biocatalysts for enzymatic synthesis of short-chain aroma esters. Biocatalysis and Agricultural Biotechnology 36. doi:10.1016/j.bcab.2021.102124.
  • Kua, G. K. B., G. K. T. Nguyen, and Z. Li. 2023. Enzyme engineering for high-yielding amide formation: lipase-catalyzed synthesis of N-Acyl glycines in aqueous media. Angewandte Chemie - International Edition 62 (14):14. doi:10.1002/anie.202217878.
  • Kutluk, T., and B. Kutluk. 2022. A commercial lipase resinase® HT (aspergillus oryzae) efficiency on triglycerides transesterification and process optimization. Sustainable Chemistry and Pharmacy 30. doi:10.1016/j.scp.2022.100862.
  • Lan, D., G. Zhao, N. Holzmann, S. Yuan, J. Wang, and Y. Wang. 2021. Structure-guided rational design of a mono- and diacylglycerol lipase from aspergillus oryzae: A single residue mutant increases the hydrolysis ability. Journal of Agricultural and Food Chemistry 69 (18). doi:10.1021/acs.jafc.1c00913.
  • Lee, J. H., S. B. Kim, H. Y. Yoo, J. H. Lee, S. O. Han, C. Park, and S. W. Kim. 2013. Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production. Korean Journal of Chemical Engineering 30 (6):1335–38. doi:10.1007/s11814-013-0058-z.
  • Lima, R. T., A. M. Alves, A. V. de Paula, H. F. de Castro, and G. S. S. Andrade. 2019. Mycelium-bound lipase from penicillium citrinum as biocatalyst for the hydrolysis of vegetable oils. Biocatalysis and Agricultural Biotechnology 22:22. doi:10.1016/j.bcab.2019.101410.
  • Lin, C. Y., and L. Ma. 2020. Influences of water content in feedstock oil on burning characteristics of fatty acid methyl esters. Processes 8 (9). doi:10.3390/PR8091130.
  • Litinas, A., S. Geivanidis, A. Faliakis, Y. Courouclis, Z. Samaras, A. Keder, V. Krasnoholovets, I. Gandzha, Y. Zabulonov, O. Puhach, et al. 2020. Biodiesel production from high FFA feedstocks with a novel chemical multifunctional process intensifier. Biofuel Research Journal 7 (2). doi:10.18331/BRJ2020.7.2.5.
  • Li, L., Y. Wang, R. Cui, F. Wang, and D. Lan. 2022. Engineering the thermostability of the mono- and diacylglycerol lipase SMG1 for the synthesis of diacylglycerols. Foods 11 (24). doi:10.3390/foods11244069.
  • Li, L., W. Wu, Z. Deng, S. Zhang, and W. Guan. 2022. Improved thermostability of lipase Lip2 from yarrowia lipolytica through disulfide bond design for preparation of medium-long-medium structured lipids. LWT 166. doi:10.1016/j.lwt.2022.113786.
  • Li, J., J. Zhang, S. Shen, B. Zhang, and W. W. Yu. 2020. Magnetic responsive thermomyces lanuginosus lipase for biodiesel synthesis. Materials Today Communications 24. doi:10.1016/j.mtcomm.2020.101197.
  • López-Fernández, J., M. D. Benaiges, and F. Valero. 2020. Rhizopus oryzae lipase, a promising industrial enzyme: biochemical characteristics, production and biocatalytic applications. Catalysts 10 (11):1277. doi:10.3390/catal10111277.
  • Lowet, M. E. 2002. The Triglyceride lipases of the pancreas. Journal of Lipid Research 43 (12):2007–16. doi:10.1194/jlr.R200012-JLR200.
  • Luna, C., D. Luna, F. M. Bautista, J. Calero, A. A. Romero, A. Posadillo, E. D. Sancho, and R. Estevez. 2018. Evaluation of lipases from wild microbial strains as biocatalysts in biodiesel production. Separations 5 (4). doi:10.3390/separations5040053.
  • Maldonado, M. R., R. C. Alnoch, J. M. de Almeida, L. A. dos Santos, A. T. Andretta, R. D. P. C. Ropaín, E. M. de Souza, D. A. Mitchell, and N. Krieger. 2021. Key mutation sites for improvement of the enantioselectivity of lipases through protein engineering. Biochemical Engineering Journal 172:108047. doi:10.1016/j.bej.2021.108047.
  • Maldonado, R. R., D. B. Lopes, E. Aguiar-Oliveira, E. S. Kamimura, and G. A. Macedo. 2016. A review on geotrichum lipases: Production, purification, immobilization and applications. Chemical and Biochemical Engineering Quarterly. doi:10.15255/CABEQ.2016.907.
  • Ma, P., D. W. Li, and R. Brüschweiler. 2023. Predicting protein flexibility with AlphaFold. Proteins: Structure, Function and Bioinformatics 91 (6):847–55. doi:10.1002/prot.26471.
  • Mandari, V., and S. K. Devarai. 2022. Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review. Bioenergy Research 15 (2):935–61. doi:10.1007/s12155-021-10333-w.
  • Marchut-Mikolajczyk, O., P. Drożdżyński, and K. Struszczyk-Świta. 2020. Biodegradation of slop oil by endophytic bacillus cereus en18 coupled with lipase from Rhizomucor Miehei (Palatase®). Chemosphere 250. doi:10.1016/j.chemosphere.2020.126203.
  • Ma, Y., C. You, G. Zhang, J. Li, and G. Du. 2023. Improving the position specificity of Themomyces lanuginosus lipase based on semi-rational design. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology 39 (8). doi:10.13345/j.cjb.220997.
  • Ma, Q., Q. Zhang, J. Liang, and C. Yang. 2021. The performance and emissions characteristics of diesel/biodiesel/alcohol blends in a diesel engine. Energy Reports 7. doi:10.1016/j.egyr.2021.02.027.
  • Miotti, R. H., D. V. Cortez, and H. F. De Castro. 2022. Transesterification of palm kernel oil with ethanol catalyzed by a combination of immobilized lipases with different specificities in continuous two-stage packed-bed reactor. Fuel 310:310. doi:10.1016/j.fuel.2021.122343.
  • Mohamed, R. A., A. B. Salleh, T. C. Leow, N. M. Yahaya, and M. B. Abdul Rahman. 2018. Site-directed mutagenesis: role of lid region for T1 lipase specificity. Protein Engineering, Design and Selection 31 (6):221–29. doi:10.1093/protein/gzy023.
  • Mohammadi, M., Z. Sepehrizadeh, A. Ebrahim-Habibi, A. R. Shahverdi, M. A. Faramarzi, and N. Setayesh. 2016. Enhancing activity and thermostability of lipase a from Serratia Marcescens by site-directed mutagenesis. Enzyme and Microbial Technology 93-94:18–28. doi:10.1016/j.enzmictec.2016.07.006.
  • Monteiro, R. R. C., S. Arana-Peña, T. N. da Rocha, L. P. Miranda, Á. Berenguer-Murcia, P. W. Tardioli, J. C. S. dos Santos, and R. Fernandez-Lafuente. 2021. Liquid lipase preparations designed for industrial production of biodiesel. is it really an optimal solution? Renewable Energy 164:1566–87. doi:10.1016/j.renene.2020.10.071.
  • Muth, M., S. Rothkötter, S. Paprosch, R. P. Schmid, and K. Schnitzlein. 2017. Competition of thermomyces lanuginosus lipase with its hydrolysis products at the oil–water interface. Colloids and Surfaces B: Biointerfaces 149:280–87. doi:10.1016/j.colsurfb.2016.10.019.
  • Okamura, T., Y. Nogami, T. Matsumoto, R. Yamada, and H. Ogino. 2022. Protein engineering to improve the stability of thermomyces lanuginosus lipase in methanol. Biochemical Engineering Journal 187. doi:10.1016/j.bej.2022.108659.
  • Oliveira, B. H., C. Bourlieu, J. Lecomte, P. Villeneuve, and V. M. Do Nascimento. 2024. Lipolysis of burkholderia lata lbbio-bl02 lipase in simulated human digestive environments: A candidate for enzyme replacement therapy. Food Bioscience 103737:103737. doi:10.1016/j.fbio.2024.103737.
  • Ortiz Ferreira, M. L., O. Dos Santos, J. C. S. Barbosa, R. C. Rodrigues, Á. Berenguer-Murcia, L. E. Briand, R. Fernandez-Lafuente, and R. Fernandez-Lafuente. 2019. Novozym 435: The “perfect” lipase immobilized biocatalyst? Catalysis Science & Technology 9 (10):2380–420. doi:10.1039/c9cy00415g.
  • Ostojčić, M., S. Budžaki, I. Flanjak, B. Bilić Rajs, I. Barišić, N. N. Tran, V. Hessel, and I. Strelec. 2021. Production of biodiesel by burkholderia cepacia lipase as a function of process parameters. Biotechnology Progress 37 (2). doi: 10.1002/btpr.3109.
  • Panizza, P., S. Cesarini, P. Diaz, and S. Rodríguez Giordano. 2015. Saturation mutagenesis in selected amino acids to shift pseudomonas Sp. Acidic lipase lip i.3 substrate specificity and activity. Chemical Communications 51 (7):1330–33. doi:10.1039/c4cc08477b.
  • Pan, H., H. Li, H. Zhang, A. Wang, D. Jin, and S. Yang. 2018. Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based Brønsted-Lewis solid acid and co-solvent. Energy Conversion and Management 166:534–44. doi:10.1016/j.enconman.2018.04.061.
  • Park, J. H., K. M. Park, Y. Chang, J. Y. Park, J. Han, and P. S. Chang. 2018. Cloning and protein expression of the Sn-1(3) regioselective lipase from cordyceps militaris. Enzyme and Microbial Technology 119:30–36. doi:10.1016/j.enzmictec.2018.08.008.
  • Photaworn, S., C. Tongurai, and S. Kungsanunt. 2017. Process development of two-step esterification plus catalyst solution recycling on waste vegetable oil possessing high free fatty acid. Chemical Engineering and Processing: Process Intensification 118:1–8. doi:10.1016/j.cep.2017.04.013.
  • Phukon, L. C., R. Chourasia, M. Kumari, T. K. Godan, D. Sahoo, B. Parameswaran, and A. K. Rai. 2020. Production and characterisation of lipase for application in detergent industry from a novel pseudomonas helmanticensis HS6. Bioresource Technology 309. doi:10.1016/j.biortech.2020.123352.
  • Qu, P., R. Lazim, D. Li, R. Xu, F. Wang, X. Li, and Y. Zhang. 2024. Enhancing methanol tolerance of thermomyces lanuginosus lipase by rational design and biodiesel production through one-step feeding of methanol. Journal of Cleaner Production 450 (April):141949. doi:10.1016/j.jclepro.2024.141949.
  • Qu, P., D. Li, R. Lazim, R. Xu, D. Xiao, F. Wang, X. Li, and Y. Zhang. 2022. Improved thermostability of thermomyces lanuginosus lipase by molecular dynamics simulation and in silico mutation prediction and its application in biodiesel production. Fuel 327. doi:10.1016/j.fuel.2022.125039.
  • Raza, S., L. Fransson, and K. Hult. 2001. Enantioselectivity in candida antarctica lipase B: A molecular dynamics study. Protein Science 10 (2). doi:10.1110/ps.33901.
  • Reis, P., K. Holmberg, H. Watzke, M. E. Leser, and R. Miller. 2009. Lipases at Interfaces: A Review. Advances in Colloid and Interface Science 147-148:237–50. doi:10.1016/j.cis.2008.06.001.
  • Remonatto, D., C. M. T. Santin, D. De Oliveira, M. Di Luccio, and J. V. De Oliveira. 2016. FAME Production from Waste Oils Through Commercial Soluble Lipase Eversa® Catalysis. Industrial Biotechnology 12 (4):254–62. doi:10.1089/ind.2016.0002.
  • Ribeiro, B. D., A. M. De Castro, M. A. Z. Coelho, and D. M. G. Freire. 2011. Production and use of lipases in bioenergy: A review from the feedstocks to biodiesel production. Enzyme Research 2011:1–16. doi:10.4061/2011/615803.
  • Sahoo, R. K., A. Das, M. Gaur, A. Sahu, S. Sahoo, S. Dey, P. K. Rahman, and E. Subudhi. 2020. Parameter optimization for thermostable lipase production and performance evaluation as prospective detergent additive. Preparative Biochemistry and Biotechnology 50 (6):578–84. doi:10.1080/10826068.2020.1719513.
  • Sánchez, N., J. M. Encinar, S. Nogales, and J. F. González. 2019. Biodiesel production from castor oil by two-step catalytic transesterification: Optimization of the process and economic assessment. Catalysts 9 (10):864. doi:10.3390/catal9100864.
  • Sangaletti, N., M. Cea, M. A. B. Regitano-d’Arce, T. M. F. de Souza Vieira, and R. Navia. 2013. Enzymatic transesterification of soybean ethanolic miscella for biodiesel production. Journal of Chemical Technology and Biotechnology 88 (11):2098–106. doi:10.1002/jctb.4080.
  • Santarossa, G., P. G. Lafranconi, C. Alquati, L. DeGioia, L. Alberghina, P. Fantucci, and M. Lotti. 2005. Mutations in the “lid” region affect chain length specificity and thermostability of a Pseudomonas Fragi lipase. FEBS Letters 579 (11):2383–86. doi:10.1016/j.febslet.2005.03.037.
  • Sena, R. O., C. Carneiro, M. V. H. Moura, G. C. Brêda, M. C. C. Pinto, L. X. S. G. M. Fé, R. Fernandez-Lafuente, E. A. Manoel, R. V. Almeida, D. M. G. Freire, et al. 2021. Application of Rhizomucor Miehei lipase-displaying pichia pastoris whole cell for biodiesel production using agro-industrial residuals as substrate. International Journal of Biological Macromolecules 189:734–43. doi:10.1016/j.ijbiomac.2021.08.173.
  • Sendzikiene, E., M. Santaraite, and V. Makareviciene. 2020. Lipase-catalysed in situ transesterification of waste rapeseed oil to produce diesel-biodiesel blends. Processes 8 (9). doi:10.3390/PR8091118.
  • Shao, H., X. Hu, L. Sun, and W. Zhou. 2019. Gene cloning, expression in E. Coli, and in vitro refolding of a lipase from proteus Sp. NH 2-2 and Its application for biodiesel production. Biotechnology Letters 41 (1):159–69. doi:10.1007/s10529-018-2625-1.
  • Shin, J., and J. H. Seo. 2023. Directed evolution of lipase to have enhanced activity toward short chain fatty acids and elucidation of structural features of mutant. KSBB Journal 38 (1):21–27. doi:10.7841/ksbbj.2023.38.1.21.
  • Skjøt, M., L. de Maria, R. Chatterjee, A. Svendsen, S. A. Patkar, P. R. Østergaard, and J. Brask. 2009. Understanding the plasticity of the α/β hydrolase fold: Lid swapping on the candida antarctica lipase B results in chimeras with interesting biocatalytic properties. Chem Bio Chem 10 (3):520–27. doi:10.1002/cbic.200800668.
  • Souza, M. S., E. C. G. Aguieiras, M. A. P. Da Silva, and M. A. P. Langone. 2009. Biodiesel synthesis via esterification of feedstock with high content of free fatty acids. Applied Biochemistry and Biotechnology 154 (1–3):74–88. doi:10.1007/s12010-008-8444-4.
  • Sowa, M. A., N. Kreuter, N. Sella, W. Albuquerque, J. Manhard, A. Siegl, P. Ghezellou, B. Li, B. Spengler, E. Weichhard, et al. 2022. Replacement of pregastric lipases in cheese production: identification and heterologous expression of a lipase from pleurotus citrinopileatus. Journal of Agricultural and Food Chemistry 70 (9). doi:10.1021/acs.jafc.1c07160.
  • Stergiou, P. Y., A. Foukis, M. Filippou, M. Koukouritaki, M. Parapouli, L. G. Theodorou, E. Hatziloukas, A. Afendra, A. Pandey, and E. M. Papamichael. 2013. Advances in lipase-catalyzed esterification reactions. Biotechnology Advances 31 (8):1846–59. doi:10.1016/j.biotechadv.2013.08.006.
  • Suehara, K. I., Y. Kawamoto, E. Fujii, J. Kohda, Y. Nakano, and T. Yano. 2005. Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification. Journal of Bioscience and Bioengineering 100 (4). doi:10.1263/jbb.100.437.
  • Sugihara, A., Y. Shimada, and Y. Tominaga. 1991. A novel geotrichum candidum lipase with some preference for the 2-position on a triglyceride molecule. Applied Microbiology and Biotechnology 35:6. doi:10.1007/BF00169887.
  • Syal, P., V. V. Verma, and R. Gupta. 2017. Targeted mutations and md simulations of a methanol-stable lipase ylip9 from yarrowia lipolytica msr80 to develop a biodiesel enzyme. International Journal of Biological Macromolecules 104. doi:10.1016/j.ijbiomac.2017.06.003.
  • Takase, M., and P. K. Essandoh. 2021. Two-step biodiesel production using high free fatty acid containing pig fat. International Journal of Green Energy 18 (4):381–89. doi:10.1080/15435075.2020.1865364.
  • Talha, N. S., and S. Sulaiman. 2016. Overview of catalysts in biodiesel production. ARPN Journal of Engineering & Applied Sciences 11 (1):439–442.
  • Tan, Z., X. Li, H. Shi, X. Yin, X. Zhu, M. Bilal, and M. M. Onchari. 2022. Enhancing the methanol tolerance of candida antarctica lipase B by saturation mutagenesis for biodiesel preparation. 3 Biotech 12:1. doi:10.1007/s13205-021-03095-x.
  • Tian, M., J. Fu, Z. Wang, C. Miao, P. Lv, D. He, Z. Li, T. Liu, M. Li, and W. Luo. 2021. Enhanced activity and stability of rhizomucor miehei lipase by mutating N-linked glycosylation site and its application in biodiesel production. Fuel 304. doi:10.1016/j.fuel.2021.121514.
  • Tian, K., K. Tai, B. J. W. Chua, and Z. Li. 2017. Directed evolution of thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease. Bioresource Technology 245:1491–97. doi:10.1016/j.biortech.2017.05.108.
  • Tian, M., L. Yang, P. Lv, Z. Wang, J. Fu, C. Miao, Z. Li, L. Li, T. Liu, W. Du, et al. 2022. Improvement of methanol tolerance and catalytic activity of rhizomucor miehei lipase for one-step synthesis of biodiesel by semi-rational design. Bioresource Technology 348. doi:10.1016/j.biortech.2022.126769.
  • Toldrá-Reig, F., L. Mora, and F. Toldrá. 2020. Developments in the use of lipase transesterification for biodiesel production from animal fat waste. Applied Sciences (Switzerland). doi:10.3390/app10155085.
  • Utama, Q. D., A. B. Sitanggang, D. R. Adawiyah, and P. Hariyadi. 2019. Lipase-catalyzed interesterification for the synthesis of medium-long-medium (MLM) structured lipids - a review. Food Technology and Biotechnology 57 (3):305–18. doi:10.17113/ftb.57.03.19.6025.
  • Vanleeuw, E., S. Winderickx, K. Thevissen, B. Lagrain, M. Dusselier, B. P. A. Cammue, and B. F. Sels. 2019. Substrate-specificity of candida rugosa lipase and its industrial application. ACS Sustainable Chemistry and Engineering 7 (19):15828–44. doi:10.1021/acssuschemeng.9b03257.
  • Veno, J., R. N. Z. R. A. Rahman, M. Masomian, M. S. M. Ali, and N. H. A. Kamarudin. 2019. Insight into improved thermostability of cold-adapted staphylococcal lipase by glycine to cysteine mutation. Oxycedrus Needles and Berries Molecules 24 (17):3169. doi:10.3390/molecules24173169.
  • Wancura, J. H. C., D. V. Rosset, G. A. Ugalde, J. V. Oliveira, M. A. Mazutti, M. V. Tres, and S. L. Jahn. 2019. Feeding strategies of methanol and lipase on eversa® transform-mediated hydroesterification for FAME production. Canadian Journal of Chemical Engineering 97 (S1):1332–39. doi:10.1002/cjce.23404.
  • Wang, X., D. Quinn, T. S. Moody, and M. Huang. 2024. ALDELE: All-purpose deep learning toolkits for predicting the biocatalytic activities of enzymes. Journal of Chemical Information and Modeling 64 (8):3123–39, April. doi:10.1021/acs.jcim.4c00058.
  • Weber, D., M. da Graça Nascimento, and A. L. Parize. 2019. Immobilization of Burkholderia Cepacia lipase on crosslinked chitosan-based support for the synthesis of geranyl acetate. Biocatalysis and Agricultural Biotechnology 19. doi:10.1016/j.bcab.2019.101133.
  • Wu, Z., W. Shi, M. Jin, and W. Zhou. 2023. Efficient enzymatic synthesis of chiral 2, 3-dihydro-1, 4-benzodioxane motif using engineered Candida antarctica lipase B. RSC Advances 13 (27):18953–59.
  • Xiang, M., L. Wang, Q. Yan, Z. Jiang, and S. Yang. 2021. Heterologous expression and biochemical characterization of a cold-active lipase from rhizopus microsporus suitable for oleate synthesis and bread making. Biotechnology Letters 43 (9). doi:10.1007/s10529-021-03167-1.
  • Xing, Y. N., J. Tan, Y. Wang, and J. Wang. 2021. Enhancing the thermostability of a mono- and diacylglycerol lipase from Malassizia globose by stabilizing a flexible loop in the catalytic pocket. Enzyme and Microbial Technology 149. doi:10.1016/j.enzmictec.2021.109849.
  • Xing, S., R. Zhu, C. Li, L. He, X. Zeng, and Q. Zhang. 2020. Gene cloning, expression, purification and characterization of a sn-1, 3 extracellular lipase from aspergillus niger GZUF36. Journal of Food Science and Technology 57:2669–80. doi:10.1007/s13197-020-04303-x.
  • Xiong, J., Q. Wang, H. Xu, and W. Sun. 2023. Immobilization of Pseudomonas Fluorescens lipase on hollow poly(o-phenylenediamine) microspheres and its application in the preparation of citronellyl acetate. Processes 11 (6). doi:10.3390/pr11061842.
  • Xu, R., Z. Chen, Y. Chen, X. Wang, Y. Zhang, X. Li, and F. Wang. 2023. Multiple strategies for high-efficiency expression of thermomyces lanuginosus lipase in pichia pastoris and production of biodiesel in solvent-free system. Fuel 333. doi:10.1016/j.fuel.2022.126246.
  • Yang, J., Y. Feng, T. Zeng, X. Guo, L. Li, R. Hong, and T. Qiu. 2017. Synthesis of biodiesel via transesterification of tung oil catalyzed by new brönsted acidic ionic liquid. Chemical Engineering Research and Design 117:584–92. doi:10.1016/j.cherd.2016.09.038.
  • Yang, X., Y. Zhang, H. Pang, S. Yuan, X. Wang, Z. Hu, Q. Zhou, Y. He, Y. Yan, and L. Xu. 2021. Codisplay of Rhizopus oryzae and Candida rugosa lipases for biodiesel production. Catalysts 11 (4):421. doi:10.3390/catal11040421.
  • Yen, C. C., C. C. Malmis, G. C. Lee, L. C. Lee, and J. F. Shaw. 2010. Site-specific saturation mutagenesis on residues 132 and 450 of candida rugosa lip2 enhances catalytic efficiency and alters substrate specificity in various chain lengths of triglycerides and esters. Journal of Agricultural and Food Chemistry 58 (20). doi:10.1021/jf1004034.
  • Yu, X. W., N. J. Tan, R. Xiao, Y. Xu, and E. A. Permyakov. 2012. Engineering a disulfide bond in the lid hinge region of rhizopus chinensis lipase: Increased thermostability and altered acyl chain length specificity. Public Library of Science ONE 7 (10):e46388. doi:10.1371/journal.pone.0046388.
  • Zhang, J., H. Chen, Z. Wang, H. Xu, W. Luo, J. Xu, and P. Lv. 2022. Heat-induced overexpression of the thermophilic lipase from bacillus thermocatenulatus in Escherichia coli by fermentation and its application in preparation biodiesel using rapeseed oil. Biotechnology and Applied Biochemistry 69 (5). doi:10.1002/bab.2247.
  • Zhang, Z., M. Long, N. Zheng, X. Lü, C. Zhu, T. Osire, X. Xia, and H. Atomi. 2023. Inside Out computational redesign of cavities for improving thermostability and catalytic activity of rhizomucor miehei lipase. Applied and Environmental Microbiology 89 (3):3. doi:10.1128/aem.02172-22.
  • Zhao, Z., S. Chen, L. Xu, J. Cai, J. Wang, and Y. Wang. 2022. Structural basis for the regiospecificity of a lipase from Streptomyces sp. W007. International Journal of Molecular Sciences 23 (10). doi:10.3390/ijms23105822.
  • Zhao, J. F., J. P. Lin, L. R. Yang, and M. Wu. 2019. Enhanced performance of rhizopus oryzae lipase by reasonable immobilization on magnetic nanoparticles and its application in synthesis 1,3-diacyglycerol. Applied Biochemistry and Biotechnology 188 (3):677–89. doi:10.1007/s12010-018-02947-2.
  • Zhao, J., Y. Xu, H. Lu, D. Zhao, J. Zheng, M. Lin, X. Liang, Z. Ding, W. Dong, M. Yang, et al. 2023. Molecular mechanism of LIP05 derived from Monascus purpureus YJX-8 for synthesizing fatty acid ethyl esters under aqueous phase. Frontiers in Microbiology 13. doi:10.3389/fmicb.2022.1107104.
  • Zhou, Y., K. Li, and S. Sun. 2021. Simultaneous esterification and transesterification of waste phoenix seed oil with a high free fatty acid content using a free lipase catalyst to prepare biodiesel. Biomass and Bioenergy 144. doi:10.1016/j.biombioe.2020.105930.
  • Zhu, G., F. Qing, Z. Fengshang, H. Dongping, and Y. Changqing. 2021. Structure and function of pancreatic lipase-related protein 2 and its relationship with pathological states. Frontiers in Genetics 12. doi:10.3389/fgene.2021.693538.
  • Zhu, E., X. Xiang, S. Wan, H. Miao, N. Han, and Z. Huang. 2022. Discovery of the key mutation site influencing the thermostability of thermomyces lanuginosus lipase by Rosetta design programs. International Journal of Molecular Sciences 23 (16). doi:10.3390/ijms23168963.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.