42
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances, progress and challenges of NiCo2O4-based composite materials for direct methanol fuel cell applications: A critical review

, , , , &
Received 15 Feb 2024, Accepted 19 Jun 2024, Published online: 03 Jul 2024

References

  • Anu Prathap, M. U., and R. Srivastava. 2013. Synthesis of NiCo2O4 and its application in the electrocatalytic oxidation of methanol. Nano Energy 2 (5):1046–53. doi: 10.1016/j.nanoen.2013.04.003.
  • Armstrong, R. D., and E. A. Charles. 1989. Some effects of cobalt hydroxide upon the electrochemical behaviour of nickel hydroxide electrodes. Journal of Power Sources 25 (2):89–97. doi: 10.1016/0378-7753(89)85001-3.
  • Arnold, E. M., J. A. Robinson, J. K. Agnes, S. Padmaja, P. N. Kumar, and J. M. Shyla. 2021. Hydrothermally synthesized NiCo2O4 nanostructures for energy storage applications. Materials Today: Proceedings 47:2025–29. doi: 10.1016/j.matpr.2021.04.216.
  • Askari, M. B., S. Azizi, M. T. T. Moghadam, M. Seifi, S. M. Rozati, and A. Di Bartolomeo. 2022. MnCo2O4/NiCo2O4/rGO as a catalyst based on binary transition metal oxide for the methanol oxidation reaction. Nanomaterials: Overview and Historical Perspectives 12 (22):4072. doi: 10.3390/nano12224072.
  • Askari, M. B., and P. Salarizadeh. 2019. Superior catalytic performance of NiCo2O4 nanorods loaded rGO towards methanol electro-oxidation and hydrogen evolution reaction. Journal of molecular liquids 291:111306. doi: 10.1016/j.molliq.2019.111306.
  • Bao, J., X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, and Y. Xie. 2015. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation, angew. Angewandte Chemie International Edition 54 (25):7399–404. doi: 10.1002/anie.201502226.
  • Bilecka, I., and M. Niederberger. 2010. Microwave chemistry for inorganic nanomaterials synthesis, Nanoscale. Nanoscale 2 (8):1358–74. doi: 10.1039/b9nr00377k.
  • Chen, B., Y. Ma, L. Ding, L. Xu, Z. Wu, Q. Yuan, and W. Huang. 2013. Reactivity of hydroxyls and water on a CeO2(111) thin film surface: the role of oxygen vacancy. The Journal of Physical Chemistry C 117 (11):5800–10. doi: 10.1021/jp312406f.
  • Chen, S., D. Huang, D. Liu, H. Sun, W. Yan, J. Wang, M. Dong, X. Tong, and W. Fan. 2021. Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Applied Catalysis B: Environmental 291:120065. doi: 10.1016/j.apcatb.2021.120065.
  • Cheng, F., J. Shen, B. Peng, Y. Pan, Z. Tao, and J. Chen. 2011. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nature Chemistry 3 (1):79–84. doi: 10.1038/nchem.931.
  • Coralli, A., B. J. M. Sarruf, P. E. V. De Miranda, L. Osmieri, S. Specchia, and N. Q. Minh. 2018. Fuel cells. Elsevier Inc. doi: 10.1016/B978-0-12-814251-6.00002-2.
  • Crespo, M. T. 2012. A review of electrodeposition methods for the preparation of alpha-radiation sources. Applied Radiation and Isotopes 70 (1):210–15. doi: 10.1016/j.apradiso.2011.09.010.
  • Das, A. K., S. Jena, S. Sahoo, R. Kuchi, D. Kim, T. A. Aljohani, G. C. Nayak, and J. R. Jeong. 2020. Facile synthesis of NiCo2O4 nanorods for electrocatalytic oxidation of methanol. Journal of Saudi Chemical Society 24 (5):434–44. doi: 10.1016/j.jscs.2020.03.007.
  • Ding, R., L. Qi, M. Jia, and H. Wang. 2013a. Porous NiCo2O4 nanostructures as bi-functional electrocatalysts for CH3OH oxidation reaction and H2O 2 reduction reaction. Electrochimica acta 113:290–301. doi: 10.1016/j.electacta.2013.09.053.
  • Ding, R., L. Qi, M. Jia, and H. Wang. 2013b. Simple hydrothermal synthesis of mesoporous spinel NiCo4 nanoparticles and their catalytic behavior in CH3OH electro-oxidation and H2O2 electro-reduction. Catalysis Science & Technology 3 (12):3207–15. doi:10.1039/c3cy00590a.
  • Ding, R., L. Qi, M. Jia, and H. Wang. 2014. Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation. Journal of Power Sources 251:287–95. doi: 10.1016/j.jpowsour.2013.11.063.
  • Dubal, D. P., P. Gomez-Romero, B. R. Sankapal, and R. Holze. 2015. Nickel cobaltite as an emerging material for supercapacitors: an overview. Nano Energy 11:377–99. doi: 10.1016/j.nanoen.2014.11.013.
  • Faid, A. Y., and H. Ismail. 2019. Highly active and easily fabricated NiCo2O4 nanoflowers for enhanced methanol Oxidation. Chemistry Select 4 (27):7896–903. doi: 10.1002/slct.201901580.
  • Fang, Y., J. Qi, F. Wang, Y. Hao, J. Zhu, and P. Zhang. 2020. Highly durable passive direct methanol fuel cell with three-dimensional ordered porous NiCo2O4 as cathode catalyst. ChemElectrochem 7 (10):2314–24. doi: 10.1002/celc.202000357.
  • Fleischmann, M., K. Korinek, and D. Pletcher. 1971. The oxidation of organic compounds at a nickel anode in alkaline solution. Journal of Electroanalytical Chemistry 31 (1):39–49. doi: 10.1016/S0022-0728(71)80040-2.
  • Ganji, F., K. Mohammadi, and B. Roozbehani. 2020. Efficient synthesis of 4A zeolite based-NiCo2O4 (NiCo2o4@4a) nanocomposite by using hydrothermal method. Journal of Solid State Chemistry 282:121111. doi: 10.1016/j.jssc.2019.121111.
  • Golabi, S. M., and A. Nozad. 2004. Electrocatalytic oxidation of methanol on a nickel-porphyrin IX complex modified glassy carbon electrode in alkaline medium. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 16 (3):199–209. doi:10.1002/elan.200302768.
  • Gopalakrishnan, A., and S. Badhulika. 2021. Hierarchical architectured dahlia flower-like NiCo2O4/NiCoSe2as a bifunctional electrode for high-energy supercapacitor and methanol fuel cell application. Energy and Fuels 35 (11):9646–59. doi:10.1021/acs.energyfuels.1c00498.
  • Gu, L., L. Qian, Y. Lei, Y. Wang, J. Li, H. Yuan, and D. Xiao. 2014. Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electro-catalytic oxidation of methanol. Journal of Power Sources 261:317–23. doi:10.1016/j.jpowsour.2014.03.098.
  • Hamdedein, A., W. M. A. El Rouby, M. D. Khan, M. M. EL-Deeb, A. A. Farghali, M. H. Khedr, and N. Revaprasadu. 2021. Synthesis and characterization of Ni/NiCo2O4 modified electrode for methanol electro-catalytic oxidation, IOP Conf. Series Materials Science and Engineering 12027. doi:10.1088/1757-899X/1046/1/012027.
  • Han, X., X. Gui, T. F. Yi, Y. Li, and C. Yue. 2018. Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Current Opinion in Solid State & Materials Science 22 (4):109–26. doi:10.1016/j.cossms.2018.05.005.
  • Hanifah, M. F. R., J. Jaafar, M. H. D. Othman, N. Yusof, M. A. Rahman, W. N. Wan Salleh, A. F. Ismail, F. Aziz, and G. U. Rehman. 2021. One-step fabrication of a highly dispersed palladium nanoparticle-decorated reduced graphene oxide electrocatalyst for methanol electro-oxidation in acidic media. The Journal of Physics and Chemistry of Solids 148:109718. doi:10.1016/j.jpcs.2020.109718.
  • Hassan, D., S. El-Safty, K. A. Khalil, M. Dewidar, and G. A. El-Magd. 2016. Carbon supported engineering NiCo2O4 hybrid nanofibers with enhanced electrocatalytic activity for oxygen reduction reaction. Materials (Basel) 9 (9):1–15. doi:10.3390/ma9090759.
  • Hu, L., L. Wu, M. Liao, X. Hu, and X. Fang. 2012. Electrical transport properties of large, individual NiCo2O4 nanoplates. Advanced Functional Materials 22 (5):998–1004. doi:10.1002/adfm.201102155.
  • Jin, D., Z. Li, and Z. Wang. 2021. Hierarchical NiCo2O4 and NiCo2S4 nanomaterials as electrocatalysts for methanol oxidation reaction. International Journal of Hydrogen Energy 46 (63):32069–80. doi:10.1016/j.ijhydene.2021.06.226.
  • Jin, D., R. Shi, Z. Li, and Z. Wang. 2021. Gelidium-shaped NiCo2O4 nanomaterial as an efficient bifunctional electrocatalyst for methanol oxidation and oxygen reduction reactions, Mater. Materials Letters 305:130854. doi:10.1016/j.matlet.2021.130854.
  • Kakodkar, R., G. He, C. D. Demirhan, M. Arbabzadeh, S. G. Baratsas, S. Avraamidou, D. Mallapragada, I. Miller, R. C. Allen, E. Gençer, et al. 2022. A review of analytical and optimization methodologies for transitions in multi-scale energy systems, Renew. Sustain Energy RevSustainable Energy Reviews 160:112277. doi:10.1016/J.RSER.2022.112277.
  • Kim, D. J., M. J. Jo, and S. Y. Nam. 2015. A review of polymer-nanocomposite electrolyte membranes for fuel cell application. Journal of Industrial & Engineering Chemistry 21:36–52. doi:10.1016/j.jiec.2014.04.030.
  • Ko, T. H., K. Devarayan, M. K. Seo, H. Y. Kim, and B. S. Kim. 2016. Facile synthesis of core/Shell-like NiCo4-decorated MWCNTs and its excellent electrocatalytic activity for methanol oxidation. Scientific Reports 6 (1):1–9. doi:10.1038/srep20313.
  • Kumar, R. 2020. NiCo2o4 Nano-/Microstructures as high-performance biosensors: A review. Springer Singapore. doi:10.1007/s40820-020-00462-w.
  • Lei, Y., J. Li, Y. Wang, L. Gu, Y. Chang, H. Yuan, and D. Xiao. 2014. Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Applied Materials and Interfaces 6 (3):1773–80. doi:10.1021/am404765y.
  • Li, J., S. Xiong, Y. Liu, Z. Ju, and Y. Qian. 2013. High electrochemical performance of monodisperse NiCo₂O₂ mesoporous microspheres as an anode material for Li-ion batteries. ACS Applied Materials and Interfaces 5 (3):981–88. doi:10.1021/am3026294.
  • Li, M., H. Zhang, T. Xiao, B. Zhang, J. Yan, D. Chen, and Y. Chen. 2017. Rose flower-like nitrogen-doped NiCo2O4/carbon used as cathode electrocatalyst for oxygen reduction in air cathode microbial fuel cell. Electrochimica acta 258:1219–27. doi:10.1016/j.electacta.2017.11.177.
  • Li, R., H. Ke, C. Shi, Z. Long, Z. Dai, H. Qiao, and K. Wang. 2021. Mesoporous RGO/NiCo2O4@carbon composite nanofibers derived from metal-organic framework compounds for lithium storage. Chem Eng Journal 415:128874. doi:10.1016/j.cej.2021.128874.
  • Li, X., G. He, C. Zeng, D. Zhou, J. Xiang, W. Chen, L. Tian, W. Yang, Z. Cheng, and J. Song. 2021. Design of hierarchical NiCo2O4 nanocages with excellent electrocatalytic dynamic for enhanced methanol oxidation. Nanomaterials: Overview and Historical Perspectives 11 (10):2667. doi:10.3390/nano11102667.
  • Li, Y., X. Han, T. Yi, Y. He, and X. Li. 2019. Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. Journal of Energy Chemistry 31:54–78. doi:10.1016/j.jechem.2018.05.010.
  • Li, Y. S., T. S. Zhao, and Z. X. Liang. 2009. Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells. Journal of Power Sources 190 (2):223–29. doi:10.1016/j.jpowsour.2009.01.055.
  • Li, Z., R. Yang, B. Li, M. Yu, D. Li, H. Wang, and Q. Li. 2017. Controllable synthesis of graphene/NiCo2O4 three-dimensional mesoporous electrocatalysts for efficient methanol oxidation reaction. Electrochimica acta 252:180–91. doi:10.1016/j.electacta.2017.09.003.
  • Lim, D., H. Kong, C. Lim, N. Kim, S. E. Shim, and S. H. Baeck. 2019. Spinel-type NiCo2O4 with abundant oxygen vacancies as a high-performance catalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy 44 (42):23775–83. doi:10.1016/j.ijhydene.2019.07.091.
  • Liu, S., L. Hu, X. Xu, A. A. Al-Ghamdi, and X. Fang. 2015. Nickel cobaltite nanostructures for photoelectric and catalytic applications. Small 11:4267–83. doi:10.1002/smll.201500315.
  • Luo, J., J. Wang, S. Liu, W. Wu, T. Jia, Z. Yang, S. Mu, and Y. Huang. 2019. Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon NY 146:1–8. doi:10.1016/j.carbon.2019.01.078.
  • Marimuthu, G., G. Palanisamy, T. Pazhanivel, G. Bharathi, M. M. Cristopher, and K. Jeyadheepan. 2020. Nanorod like NiCo2O4 nanostructure for high sensitive and selective ammonia gas sensor. Journal of Materials Science: Materials in Electronics 31 (3):1951–59. doi:10.1007/s10854-019-02714-x.
  • Md Ishak, N. A. I., S. K. Kamarudin, S. N. Timmiati, S. Mohd Sauid, N. A. Karim, and S. Basri. 2023. Green synthesis of platinum nanoparticles as a robust electrocatalyst for methanol oxidation reaction: Metabolite profiling and antioxidant evaluation. Journal of Cleaner Production 382:135111. doi:10.1016/j.jclepro.2022.135111.
  • Mohamed, M. M., M. Khairy, and S. Eid. 2018. Polyethylene glycol assisted one-pot hydrothermal synthesis of NiWO4/WO3 heterojunction for direct Methanol fuel cells. Electrochimica acta 263:286–98. doi:10.1016/j.electacta.2018.01.063.
  • Musiani, M. 2000. Electrodeposition of composites: An expanding subject in electrochemical materials science. Electrochimica acta 45 (20):3397–402. doi: 10.1016/S0013-4686(00)00438-2.
  • Narayanan, N., and N. Bernaurdshaw. 2020. Reduced graphene oxide supported NiCo2O4 nano-rods: An efficient, stable and cost-effective electrocatalyst for methanol oxidation reaction. ChemCatchem 12 (3):771–80. doi:10.1002/cctc.201901496.
  • Narayanasamy, S., and J. Jayaprakash. 2021. Carbon cloth/nickel cobaltite (NiCo2o4)/polyaniline (PANI) composite electrodes: preparation, characterization, and application in microbial fuel cells. Fuel 301:121016. doi:10.1016/j.fuel.2021.121016.
  • Naya, K., R. Ishikawa, and K. I. Fukui. 2009. Oxygen-vacancy-stabilized positively charged au nanoparticles on CeO2 (111) Studied by Reflection−Absorption Infrared Spectroscopy. The Journal of Physical Chemistry C 113 (24):10726–30. doi:10.1021/jp902564w.
  • O’Hare, D. 2001. Hydrothermal Synthesis, 2nd ed. Elsevier. doi:10.1007/978-3-642-41275-2_6.
  • Pappu, S., K. Nanaji, S. Mandati, T. N. Rao, S. K. Martha, and S. V. Bulusu. 2020. Cost-Effective Synthesis of Electrodeposited NiCo4 nanosheets with induced oxygen vacancies: a highly efficient electrode material for hybrid supercapacitors. Batteries & Supercaps 3 (11):1209–19. doi:10.1002/batt.202000121.
  • Park, G. D., J. K. Lee, and Y. C. Kang. 2018. Three-dimensional macroporous CNTs microspheres highly loaded with NiCo2O4 hollow nanospheres showing excellent lithium-ion storage performances. Carbon NY 128:191–200. doi:10.1016/j.carbon.2017.11.088.
  • Peter, A. P., D. T. Y. Ying, A. D. M. Satya, F. W. Han, S. K. S. Ning, T. P. N. Y. J. En, L. H. Ren, N. S. M. Aron, C. K. Wayne, K. K. Shiong, et al. 2022. Proceedings Of The 6th International Conference And Postgraduate Colloquium For Environmental Research (POCER 2022), In: Proc. 6TH Int. Conf. Postgrad. Colloq. Environ. Res. (POCER 2022), eds 1–678, Malaysia: University of Nottingham.
  • Poonam, S., S. Kriti, T. S. K. Navjot, and S. K. Tripathi. 2018. Characterization of nickel cobalt oxide: a potential material for supercapacitor. Materials Research Express 6 (2):025502. doi:10.1088/2053-1591/aae9c1.
  • Prathap, M. U. A., B. Satpati, and R. Srivastava. 2014. Facile preparation of β-Ni(OH)2-NiCo2O4 hybrid nanostructure and its application in the electro-catalytic oxidation of methanol. Electrochimica acta 130:368–80. doi:10.1016/j.electacta.2014.03.043.
  • Qian, L., L. Gu, L. Yang, H. Yuan, and D. Xiao. 2013. Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 5 (16):7388–96. doi:10.1039/c3nr01104f.
  • Rambabu, G., N. Nagaraju, and S. D. Bhat. 2016. Functionalized fullerene embedded in Nafion matrix: a modified composite membrane electrolyte for direct methanol fuel cells. Chemical Engineering Journal 306:43–52. doi:10.1016/J.CEJ.2016.07.032.
  • Rong, H., T. Chen, R. Shi, Y. Zhang, and Z. Wang. 2018. Hierarchical NiCo2O4@NiCo2S4 Nanocomposite on Ni foam as an electrode for hybrid supercapacitors. American Chemical Society Omega 3 (5):5634–42. doi:10.1021/acsomega.8b00742.
  • Siwatch, P., K. Sharma, N. Singh, N. Manyani, and S. K. Tripathi. 2021. Enhanced supercapacitive performance of reduced graphene oxide by incorporating NiCo2O4 quantum dots using aqueous electrolyte. Electrochimica acta 381:138235. doi:10.1016/j.electacta.2021.138235.
  • Sreekanth, T. V. M., K. Yoo, and J. Kim. 2020. Thorn-shaped NiCo2O4 nanoparticles as multi-functional electrocatalysts for electrochemical applications. Journal of the Taiwan Institute of Chemical Engineers 114:291–99. doi:10.1016/j.jtice.2020.09.006.
  • Sun, M., C. Wang, S. Wang, Z. Wang, Z. Wang, J. Liu, X. Song, and D. Lin. 2021. NH3•H2O-assisted solvent thermal synthesis of mesoporous spherical NiCo2O4 nanomaterials having rich oxygen vacancies for enhanced activity of CH3OH electrooxidation. Electrochimica acta 390:138794. doi:10.1016/j.electacta.2021.138794.
  • Sun, S., M. Zhao, Q. Wang, S. Xue, Q. Huang, N. Yu, and Y. Wu. 2023. Flexible all-solid-state direct methanol fuel cells with high specific power density. Small 19 (12):2205835. doi:10.1002/SMLL.202205835.
  • Sun, Y., X. Zuo, D. Xu, D. Sun, X. Zhang, and S. Zeng. 2016. Flower-like NiCo2O4 microstructures as promising anode material for high performance lithium-ion batteries: Facile synthesis and its lithium storage properties. Chemistry Select 1 (16):5129–36. doi:10.1002/slct.201601147.
  • Tahir, M., L. Pan, F. Idrees, X. Zhang, L. Wang, J. J. Zou, and Z. L. Wang. 2017. Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37:136–57. doi:10.1016/J.NANOEN.2017.05.022.
  • Tanveer, M., T. Ambreen, H. Khan, G. M. Kim, and C. W. Park. 2022. Paper-based microfluidic fuel cells and their applications: a prospective review. Energy Conversion and Management 264:115732. doi:10.1016/j.enconman.2022.115732.
  • Taraszewska, J., and G. Rosłonek. 1994. Electrocatalytic oxidation of methanol on a glassy carbon electrode modified by nickel hydroxide formed by ex situ chemical precipitation. Journal of Electroanalytical Chemistry 364 (1–2):209–13. doi:10.1016/0022-0728(93)02919-9.
  • Tomboc, G. M., H. Kim, H. Kim, and H. Kim. 2018. Utilization of the superior properties of highly mesoporous PVP modified NiCo2O4 with accessible 3D nanostructure and flower-like morphology towards electrochemical methanol oxidation reaction. Journal of Energy Chemistry 29:136–46. doi:10.1016/j.jechem.2018.08.009.
  • Tripathi, B. P., and V. K. Shahi. 2011. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Progress in Polymer Science 36 (7):945–79. doi:10.1016/j.progpolymsci.2010.12.005.
  • Wang, H., and J. Cui. 2019. Preparation of NiCo2O4 with different morphologies and its effect on absorbing properties, Mater. Materials Letters 236:465–67. doi:10.1016/j.matlet.2018.10.164.
  • Wang, Q., B. Liu, X. Wang, S. Ran, L. Wang, D. Chen, and G. Shen. 2012. Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. Journal of Materials Chemistry 22 (40):21647–53. doi:10.1039/c2jm34705a.
  • Wang, X., C. Deng, X. Hong, and W. Dong. 2022. Impact of COVID-19 restrictions on building energy consumption using Phase Change Materials (PCM) and insulation: a case study in six climatic zones of Morocco. Journal of Energy Storage 55:105837. doi:10.1016/j.est.2022.105374.
  • Wee, J. H. 2007. Applications of proton exchange membrane fuel cell systems. Renewable and Sustainable Energy Reviews 11 (8):1720–38. doi:10.1016/j.rser.2006.01.005.
  • Wei, R., H. Chang, S. Huang, and L. Huang. 2023. A bibliometric analysis on safety of fuel cells: research trends and perspectives. International Journal of Hydrogen Energy 48 (34):12861–76. doi:10.1016/J.IJHYDENE.2022.12.211.
  • Wei, Z., J. Guo, M. Qu, Z. Guo, and H. Zhang. 2020. Honeycombed-like nanosheet array composite NiCo2O4/rGO for efficient methanol electrooxidation and supercapacitors. Electrochimica acta 362:137145. doi:10.1016/j.electacta.2020.137145.
  • Wu, Z., Y. Zhu, and X. Ji. 2014. NiCo2O4-based materials for electrochemical supercapacitors. Journal of Mater Chemistry A 2 (36):14759–72. doi:10.1039/c4ta02390k.
  • Xia, Z., X. Zhang, H. Sun, S. Wang, and G. Sun. 2019. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy 65:104048. doi:10.1016/J.NANOEN.2019.104048.
  • Xue Yan, S., S. Hua Luo, M. Zhu Sun, Q. Wang, Y. Hui Zhang, and X. Liu. 2021. Facile hydrothermal synthesis of urchin-like NiCo2O4 as advanced electrochemical pseudocapacitor materials. International Journal of Energy Research 45 (14):20186–98. doi:10.1002/er.7101.
  • Yadav, A. A., Y. M. Hunge, B.-K. Kim, and S.-W. Kang. 2022. Hierarchically designed NiCo2O4 nanowire/NiCo2O4 nanosheet electrodes for high-performance energy storage applications. Surfaces and Interfaces 34:102340. doi:10.1016/j.surfin.2022.102340.
  • Yan, D., W. Wang, X. Luo, C. Chen, Y. Zeng, and Z. Zhu. 2018. NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chemistry Eng Journal 334:864–72. doi:10.1016/j.cej.2017.10.128.
  • Yu, M., J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang, and J. An. 2015. Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochimica acta 151:99–108. doi:10.1016/j.electacta.2014.10.156.
  • Yu, Y., B. Yang, Y. Wang, X. Shen, and X. Hu. 2020. Low-temperature liquid phase synthesis of flower-like NiCo4 for high-efficiency methanol electro-oxidation. ACS Applied Energy Materials 3 (9):9076–82. doi:10.1021/acsaem.0c01461.
  • Yuda, A., A. Ashok, and A. Kumar. 2022. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. Catalysis Reviews 64 (1):126–228. doi:10.1080/01614940.2020.1802811.
  • Zhang, H., R. Wang, D. Lin, Y. Zeng, and X. Lu. 2018. Ni-based nanostructures as high-performance cathodes for rechargeable Ni−Zn Battery. ChemNanomat 4:525–36. doi:10.1002/cnma.201800078.
  • Zhang, H., X. Zhang, D. Zhang, X. Sun, H. Lin, C. Wang, and Y. Ma. 2013. One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. The Journal of Physical Chemistry B 117 (6):1616–27. doi:10.1021/jp305198j.
  • Zhang, M., D. Li, L. Yang, H. Shi, and Y. Liu. 2020. Dendritic micro-nano NiCo2O4 anode material generated from chemical dealloying for high-performance lithium-ion batteries. Ionics (Kiel) 26 (11):5385–92. doi:10.1007/s11581-020-03726-y.
  • Zhao, Y., X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, and X. L. Sun. 2016. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Advanced Energy Materials 6 (8):1–19. doi:10.1002/aenm.201502175.
  • Zhou, Y., S. Sun, C. Wei, Y. Sun, P. Xi, Z. Feng, and Z. J. Xu. 2019. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides. Advanced Materials 31 (41):1–11. doi:10.1002/adma.201902509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.