0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on the comparative performance of R1233zd(E) and R123 for organic rankine cycle for engine waste heat recovery

, , , , , , & show all
Received 11 May 2024, Accepted 27 Jun 2024, Published online: 14 Jul 2024

References

  • Abadi, B., E. Y. Gholamreza, and K. Chun Kim. 2015. Experimental study of a 1 kw organic rankine cycle with a zeotropic mixture of R245fa/R134a. Energy 93:2363–73. doi: 10.1016/j.energy.2015.10.092.
  • Agency, I. E. 2021. CO2 emissions from fuel combustion.
  • Bao, J., and L. Zhao. 2013. A review of working fluid and expander selections for organic rankine cycle. Renewable and Sustainable Energy Reviews 24:325–42. doi: 10.1016/j.rser.2013.03.040.
  • Chen, J., Y. Huang, Z. Niu, Y. Chen, and X. Luo. 2018. Performance analysis of a novel organic rankine cycle with a vapor-liquid ejector. Energy Conversion and Management 157:382–95. doi: 10.1016/j.enconman.2017.11.038.
  • Cong, G., D. Y. G. Xiaoze Du, and L. Yang. 2016. Investigation on working fluids selection for organic rankine cycles with low-temperature heat sources. International Journal of Green Energy 13 (6):556–65. doi: 10.1080/15435075.2014.979491.
  • Eyerer, S., C. Wieland, A. Vandersickel, and H. Spliethoff. 2016. Experimental study of an ORC (organic rankine cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization. Energy 103:660–71. doi: 10.1016/j.energy.2016.03.034.
  • Kim, Y. M., D. Gil Shin, C. Gi Kim, and G. Baek Cho. 2016. Single-loop organic rankine cycles for engine waste heat recovery using both low- and high-temperature heat sources. Energy 96:482–94. doi: 10.1016/j.energy.2015.12.092.
  • Lemmon, E. W., M. Mo, and M. L. Huber. 2010. After obtaining a large amount of measured experimental data, the thermodynamic analysis was carried out using the commercial thermodynamic library Refprop.
  • Liu, P., G. Shu, and H. Tian. 2019. How to approach optimal practical organic rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery. Energy 174:543–52. doi: 10.1016/j.energy.2019.03.016.
  • Miao, Z., X. Yang, J. Xu, and J. Zou. 2014. Development and dynamic characteristics of an organic rankine cycle. Chinese Science Bulletin 59 (33):4367–78. doi: 10.1007/s11434-014-0567-0.
  • Peris, B., J. Navarro-Esbrí, and F. Molés. 2013. Bottoming organic rankine cycle configurations to increase internal combustion engines power output from cooling water waste heat recovery. Applied Thermal Engineering 61 (2):364–71. doi: 10.1016/j.applthermaleng.2013.08.016.
  • Pili, R., C. Wieland, H. Spliethoff, and F. Haglind. 2022. Numerical analysis of feedforward concepts for advanced control of organic rankine cycle systems on heavy-duty vehicles. Journal of Cleaner Production 351. doi: 10.1016/j.jclepro.2022.131470.
  • Roy, J. P., and A. Misra. 2017. Comparative performance study of different configurations of organic rankine cycle using low-grade waste heat for power generation. International Journal of Green Energy 14 (2):212–28. doi: 10.1080/15435075.2016.1253570.
  • Shu, G., M. Zhao, H. Tian, Y. Huo, and W. Zhu. 2016. Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine. Energy 115:756–69. doi: 10.1016/j.energy.2016.09.082.
  • Sun, Z., C. Liu, and S. Wang. 2020. Multi-objective decision framework for comprehensive assessment of organic rankine cycle system. Journal of Renewable and Sustainable Energy 12:1. doi: 10.1063/1.5129491.
  • Teng, H., G. Regner, and C. Cowland. 2007. Waste heat recovery of heavy-duty diesel engines by organic rankine cycle part ii: Working fluids for WHR-ORC. SAE Technical Papers 1 (724):1–13.
  • Tian, H., P. Liu, and G. Shu. 2021. Challenges and opportunities of rankine cycle for waste heat recovery from internal combustion engine. Progress in Energy and Combustion Science 84:100906. doi: 10.1016/j.pecs.2021.100906.
  • Tian, H., G. Shu, H. Wei, X. Liang, and L. Liu. 2012. Fluids and parameters optimization for the organic rankine cycles (ORCs) used in exhaust heat recovery of internal combustion engine (ICE). Energy 47 (1):125–36. doi: 10.1016/j.energy.2012.09.021.
  • Wang, J., Z. Yan, M. Wang, S. Ma, and Y. Dai. 2013. Thermodynamic analysis and optimization of an (organic rankine cycle) ORC using low grade heat source. Energy 49:356–65. doi: 10.1016/j.energy.2012.11.009.
  • Wang, M., J. Zhang, S. Zhao, Q. Liu, Y. Zhao, and H. Wu. 2019. Performance investigation of transcritical and dual-pressure organic rankine cycles from the aspect of thermal match. Energy Conversion and Management 197. doi: 10.1016/j.enconman.2019.111850.
  • Wang, X., R. Wang, M. Jin, G. Shu, H. Tian, and J. Pan. 2020. Control of superheat of organic rankine cycle under transient heat source based on deep reinforcement learning. Applied Energy 278:115637. doi: 10.1016/j.apenergy.2020.115637.
  • Wu, Z., D. Pan, N. Gao, T. Zhu, and F. Xie. 2015. Experimental testing and numerical simulation of scroll expander in a small scale organic rankine cycle system. Applied Thermal Engineering 87:529–37. doi: 10.1016/j.applthermaleng.2015.05.040.
  • Yang, S., B. Zhang, J. Xu, W. Zhang, and C. Wang. 2013. Working fluid selection for an organic rankine cycle for waste heat recovery under different heat source temperatures. Paper presented at the 2nd International Conference on Energy and Environmental Protection (ICEEP 2013), Guilin, PEOPLES R CHINA, 2013. Apr 19-21.
  • Ye, Z., J. Yang, J. Shi, and J. Chen. 2020a. Thermo-economic and environmental analysis of various low-GWP refrigerants in organic rankine cycle system. Energy 199. doi: 10.1016/j.energy.2020.117344.
  • Ye, Z., J. Yang, J. Shi, and J. Chen. 2020b. Thermo-economic and environmental analysis of various low-GWP refrigerants in organic rankine cycle system. Energy 199:117344. doi:10.1016/j.energy.2020.117344.
  • Zhang, X., X. Wang, J. Cai, Z. He, H. Tian, G. Shu, and L. Shi. 2022. Experimental study on operating parameters matching characteristic of the organic rankine cycle for engine waste heat recovery. Energy 244:122681. doi: 10.1016/j.energy.2021.122681.
  • Zhang, X., X. Wang, J. Cai, R. Wang, X. Bian, J. Wang, H. Tian, and G. Shu. 2023. Selection maps of dual-pressure organic rankine cycle configurations for engine waste heat recovery applications. Applied Thermal Engineering 228. doi: 10.1016/j.applthermaleng.2023.120478.
  • Zhang, X., X. Wang, J. Cai, R. Wang, X. Bian, P. Yuan, H. Tian, and G. Shu. 2023. Achieving reasonable waste heat utilization in all truck operating conditions via a dual-pressure organic rankine cycle and its operating strategy. Journal of Cleaner Production 419:138302. doi: 10.1016/j.jclepro.2023.138302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.