0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation on the operation strategy of a chemisorption heat pump system

, &
Received 25 Jan 2024, Accepted 13 Jul 2024, Published online: 04 Aug 2024

References

  • Atkinson, G. H., S. Hinmers, R. E. Critoph, and M. van der Pal. 2021. Ammonium chloride (NH4Cl)—ammonia (NH3): Sorption characteristics for heat pump applications. Energies 14 (18):6002. doi:10.3390/en14186002.
  • Bao, H., Z. Ma, and A. P. Roskilly. 2016. Anthony Paul Roskilly. Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation. Applied Energy 164:228–36. doi:10.1016/j.apenergy.2015.11.052.
  • Bao, H., Z. Ma, and A. P. Roskilly. 2017. Anthony Paul Roskilly. An optimised chemisorption cycle for power generation using low grade heat. Applied Energy 186:251–61. doi:10.1016/j.apenergy.2016.06.080.
  • Bao, H. S., R. G. Oliveira, R. Z. Wang, and L. W. Wang. 2010. Choice of low temperature salt for a resorption refrigerator. Industrial & Engineering Chemistry Research 49 (10):4897–903. doi:10.1021/ie901575k.
  • Bao, H., Y. Wang, A. P. Roskilly. 2014. Yaodong Wang, Anthony Paul Roskilly. Modelling of a chemisorption refrigeration and power cogeneration system. Applied Energy 119:351–62. doi:10.1016/j.apenergy.2014.01.012.
  • Bergman, T. L., and A. S. Lavine. 2017. Fundamentals of heat and mass transfer, 8th ed. USA: John Wiley & Sons, Inc.
  • Cabeza, L. F., A. Solé, and C. Barreneche. 2017. Review on sorption materials and technologies for heat pumps and thermal energy storage. Renewable Energy 110:3–39. doi:10.1016/j.renene.2016.09.059.
  • CO2 emissions in 2022. IEA. https://www.iea.org/reports/co2-emissions-in-2022.
  • de Oliveira, R. G., and D. João Generoso. 2016. Influence of the operational conditions on the performance of a chemisorption chiller driven by hot water between 65°C and 80°C. Applied Energy 162:257–65. doi:10.1016/j.apenergy.2015.10.057.
  • Hinmers, S., and E. C. Robert. 2019. Modelling the ammoniation of barium chloride for chemical heat transformations. Energies 12 (23):4404. doi:10.3390/en12234404.
  • Huang, H.-J., G.-B. Wu, J. Yang, T.-C. Dai, W.-K. Yuan, and H.-B. Lu. 2004. Modeling of gas–solid chemisorption in chemical heat pumps. Separation and Purification Technology 34 (1–3):191–200. doi:10.1016/S1383-5866(03)00192-8.
  • Hun Han, J., K.-H. Lee, D. Hyun Kim, and H. Kim. 2000. Transformation analysis of thermochemical reactor based on thermophysical properties of Graphite−MnCl2Complex. Industrial & Engineering Chemistry Research 39 (11):4127–39. doi:10.1021/ie9904394.
  • Jiang, L., L. W. Wang, C. Z. Liu, and R. Z. Wang. 2016. Experimental study on a resorption system for power and refrigeration cogeneration. Energy 97:182–90. doi:10.1016/j.energy.2015.12.128.
  • John, R. T. 2016. The heat transfer engineering data book III: Enhanced heat transfer design methods for tubular heat exchangers, 3rd ed. Ulm, Germany: Wieland-Werke AG.
  • Kim, H. S., D. H. Kim, J. S. Kim, W. Kim, and Y. Kim. 2024. A numerical study on the performance of chemisorption heat pump according to various design conditions. Applied Thermal Engineering 243:122519. doi:10.1016/j.applthermaleng.2024.122519.
  • Kim, H. S., J. H. Kim, D. H. Kim, Y. Kim, and S. H. Yoon. 2023. An experimental study on the chemisorption heat pump for low temperature heat source. 14th IEA Heat Pump Conference 979, Chicago, USA, 1–7.
  • Kim, H. S., J. H. Kim, J. S. Kim, W. Kim, and Y. Kim. 2024. Experimental study of a chemisorption heat pump under different operation conditions. Applied Thermal Engineering 240:122274. doi:10.1016/j.applthermaleng.2023.122274.
  • Neveu, P., and J. Castaing-Lasvignottes. 1997. Development of a numerical sizing tool for a solid-gas thermochemical transformer—I. Impact of the microscopic process on the dynamic behaviour of a solid-gas reactor. Applied Thermal Engineering 17 (6):501–18. doi:10.1016/S1359-4311(96)00065-8.
  • Noraldeen Al-Mousawi, F., R. Z. Homod, N. S. Dhaidan, R. AL-Dadah, S. Mahmoud, E. Elsayed, P. Youssef, B. K. Nile, and A. Elsayed. 2023. Investigation performance of adsorption system for desalination and power generation using superior adsorbent materials. Thermal Science and Engineering Progress 43:102019. doi:10.1016/j.tsep.2023.102019.
  • Oliveira, R. G., R. Z. Wang, J. K. Kiplagat, and C. Y. Wang. 2009. Novel composite sorbent for resorption systems and for chemisorption air conditioners driven by low generation temperature. Renewable Energy 34 (12):2757–64. doi:10.1016/j.renene.2009.05.016.
  • Pons a, M., F. Meunier, G. Cacciola, R. E. Critoph, M. Groll, L. Puigjaner, B. Spinner, and F. Ziegler. 1999. Thermodynamic based comparison of sorption systems for cooling and heat pumping: Comparaison des performances. International Journal of Refrigeration 22 (1):5–17. doi:10.1016/S0140-7007(98)00048-6.
  • Rivero Pacho, A. 2015. Innovation in carbon-ammonia adsorption heat pump technology: A case study. Institute of Refrigeration. http://i-stute.org.uk/Other%20files/Presentations/Angeles%20Rivero%20Pacho%20-%20IOR%20Ted%20Perry%202015.pdf.
  • Rivero-Pacho, A. M., R. E. Critoph, and S. J. Metcalf. 2017. Modelling and development of a generator for a domestic gas-fired carbon-ammonia adsorption heat pump. Renewable Energy 110:180–85. doi:10.1016/j.renene.2017.03.089.
  • Rogerio, G. O., R. Z. Wang, and T. X. Li. 2008. Transient analysis of a chemisorption air conditioning system operating under different kinds of cycle. Industrial & Engineering Chemistry Research 47 (4):1102–10. doi:10.1021/ie071190q.
  • Rose, J. W. 1984. Effect of pressure gradient in forced convection film condensation on a horizontal tube. International Journal of Heat and Mass Transfer 27 (1):39–47. doi:10.1016/0017-9310(84)90235-7.
  • Soo Kim, H., D. H. Kim, and S. Ho Yoon. 2023. Transient modeling of a chemisorption heat pump using ammonia with expanded graphite – NaBr. Applied Thermal Engineering 234:121233. doi:10.1016/j.applthermaleng.2023.121233.
  • Talpada, J. S., and P. V. Ramana. 2022. A review on performance of absorption refrigeration system using new working pairs and nano-particles. International Journal of Ambient Energy 43 (1):5654–72. doi:10.1080/01430750.2021.1953589.
  • Tang, K., Y. Lu, L. Jiang, L. Wang, Y. Wang, A. P. Roskilly, and X. Yu. 2019. Yaodong Wang, Anthony Paul Roskilly, Xiaoli Yu. Investigation of thermal characteristics of strontium chloride composite sorbent for sorption refrigeration. Thermal Science and Engineering Progress 10:179–85. doi:10.1016/j.tsep.2019.01.020.
  • Vinício Oro, M., R. G. de Oliveira, and E. Bazzo. 2018. An integrated solution for waste heat recovery from fuel cells applied to adsorption systems. Applied Thermal Engineering 136:747–54. doi:10.1016/j.applthermaleng.2018.01.081.
  • Wang, L. W., R. Z. Wang, and R. G. Oliveira. 2009. A review on adsorption working pairs for refrigeration. Renewable and Sustainable Energy Reviews 13 (3):518–34. doi:10.1016/j.rser.2007.12.002.
  • Xu, J., R. G. Oliveira, and R. Z. Wang. 2011. Resorption system with simultaneous heat and cold production. International Journal of Refrigeration 34 (5):1262–67. doi:10.1016/j.ijrefrig.2011.03.012.
  • Yang, Z., M. Qu, and K. R. Gluesenkamp. 2020a. Design screening and analysis of gas-fired ammonia-based chemisorption heat pumps for space heating in cold climate. Energy 207:118213. doi:10.1016/j.energy.2020.118213.
  • Yang, Z., M. Qu, and K. R. Gluesenkamp. 2020b. Dynamic modelling and performance evaluation of a chemisorption heat pump for cold climate. 2020 ASHRAE Winter Conference, Orlando, Florida, United States of America, 1649364.
  • Zhou, Z. S., L. W. Wang, L. Jiang, P. Gao, and R. Z. Wang. 2016. Non-equilibrium sorption performances for composite sorbents of chlorides–ammonia working pairs for refrigeration. International Journal of Refrigeration 65:60–68. doi:10.1016/j.ijrefrig.2015.11.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.