14
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A coarse-to-fine ensemble method for capacity prediction of lithium-ion batteries in production

, &
Received 02 Apr 2024, Accepted 17 Jul 2024, Published online: 30 Jul 2024

References

  • Cai, L., and J. D. Lin. 2023. A charging-feature-based estimation model for state of health of lithium-ion batteries. Expert Systems with Applications 238 (B):122034. doi:10.1016/j.eswa.2023.122034.
  • Cai, L., J. Meng, D.-I. Stroe, G. Luo, and R. Teodorescu. 2019. An evolutionary framework for lithium-ion battery state of health estimation. Journal of Power Sources 412:615–22. doi:10.1016/j.jpowsour.2018.12.001.
  • Chaoui, H., and C. C. Ibe-Ekeocha. 2017. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Transactions on Vehicular Technology 66 (10):8773–83. doi:10.1109/TVT.2017.2715333.
  • Chen, Z., W. J. Shen, L. Q. Chen, and S. Q. Wang. 2022. Adaptive online capacity prediction based on transfer learning for fast charging lithium-ion batteries. Energy 248:123537. doi:10.1016/j.energy.2022.123537.
  • Choi, C., S. Park, and J. Kim. 2022. Uniqueness of multilayer perceptron-based capacity prediction for contributing state-of-charge estimation in a lithium primary battery. Ain Shams Engineering Journal 14 (4):101936. doi:10.1016/j.asej.2022.101936.
  • Chou, J. H., F. Wang, and S. C. Lo. 2023. A novel fine-tuning model based on transfer learning for future capacity prediction of lithium-ion batteries. Batteries-Basel 9 (6):325. doi:10.3390/batteries9060325.
  • Deng, Z., X. Hu, P. Li, X. Lin, and X. Bian. 2022. Data-driven battery state of health estimation based on random partial charging data. IEEE Transactions on Power Electronics 37 (5):5021–31. doi:10.1109/TPEL.2021.3134701.
  • Deng, Z., L. Xu, H. Liu, X. Hu, B. Wang, and J. Zhou. 2024. Rapid health estimation of in-service battery packs based on limited labels and domain adaptation. Journal of Energy Chemistry 89:345–54. doi:10.1016/j.jechem.2023.10.056.
  • Dong, G., Z. Chen, J. Wei, and Q. Ling. 2018. Battery health prognosis using brownian motion modeling and particle filtering. IEEE Transactions on Industrial Electronics 65 (11):8646–55. doi:10.1109/TIE.2018.2813964.
  • Fard, M. M., T. Thonet, and E. Gaussier. 2020. Deep k-means: Jointly clustering with k-means and learning representations. Pattern Recognition Letters 138:185–92. doi:10.1016/j.patrec.2020.07.028.
  • Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29 (5):1189–232. http://www.jstor.org/stable/2699986.
  • Hu, X., L. Xu, X. Lin, and M. Pecht. 2020. Battery lifetime prognostics. Joule 4 (2):310–46. doi:10.1016/j.joule.2019.11.018.
  • Jiang, P. C., T. Y. Zhang, G. J. Huang, W. Hua, Y. Zhang, W. T. Wang, and T. Zhu. 2024. An end-cloud collaboration approach for state-of-health estimation of lithium-ion batteries based on bi-lstm with collaboration of multi-feature and attention mechanism. International Journal of Green Energy 21 (10):2205–17. doi:10.1080/15435075.2023.2299402.
  • Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and L. Tie-Yan. 2017. LightGBM: A highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), 3149–57, Red Hook, NY, USA: Curran Associates Inc. doi:10.5555/3294996.3295074.
  • Li, F., Y. J. Min, Y. Zhang, Y. Zhang, H. F. Zuo, and F. Bai. 2023. State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse gaussian process regression. Reliability Engineering and System Safety 242:109787. doi:10.1016/j.ress.2023.109787.
  • Li, Y., C. Zou, M. Berecibar, E. Nanini-Maury, J.-W. Chan, P. Van den Bossche, J. Van Mierlo, and N. Omar. 2018. Random forest regression for online capacity estimation of lithium-ion batteries. Applied Energy 232:197–210. doi:10.1016/j.apenergy.2018.09.182.
  • Liang, Y. W., S. L. Wang, Y. C. Fan, X. Y. Hao, D. L. Liu, and C. Fernandez. 2024. State of health prediction of lithium-ion batteries using combined machine learning model based on nonlinear constraint optimization. Journal of the Electrochemical Society 171 (1):010508. doi:10.1149/1945-7111/ad18e1.
  • Liu, H., Y. M. Li, L. Luo, and C. L. Zhang. 2023. A lithium-ion battery capacity and RUL prediction fusion method based on decomposition strategy and GRU. Batteries-Basel 9 (6):323. doi:10.3390/batteries9060323.
  • Liu, K. L., M. F. Niri, G. Apachitei, M. Lain, D. Greenwood, and J. Marco. 2022. Interpretable machine learning for battery capacities prediction and coating parameters analysis. Control Engineering Practice 124:105202. doi:10.1016/j.conengprac.2022.105202.
  • Liu, Z. Y., L. D. Tang, H. Wang, and Z. J. Huang. 2024. Capacity prediction method of lithium-ion battery in production process based on improved random forest. Energy Technology 12 (3):3. doi:10.1002/ente.202300891.
  • Mawonou, K. S. R., A. Eddahech, D. Dumur, D. Beauvois, and E. Godoy. 2021. State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking. Journal of Power Sources 484:229154. doi:10.1016/j.jpowsour.2020.229154.
  • Ng, M.-F., J. Zhao, Q. Yan, G. J. Conduit, and Z. W. Seh. 2020. Predicting the state of charge and health of batteries using data-driven machine learning. Nature Machine Intelligence 2 (3):161–70. doi:10.1038/s42256-020-0156-7.
  • Sadabadi, K. K., P. Ramesh, P. Tulpule, and G. Rizzoni. 2019. Design and calibration of a semi-empirical model for capturing dominant aging mechanisms of a PbA battery. Journal of Energy Storage 24:100789. doi:10.1016/j.est.2019.100789.
  • Shoumo, W., O. Zhichao, and Z. Hao. 2021. Total discharge capacity prediction method of lithium battery capacity grading process. Chinese patent CN113848480A, filed September 23, 2021, and issued December 28, 2021. https://www.patent9.com/patent/202111111519.3.html.
  • Sui, X., S. He, S. B. Vilsen, J. H. Meng, R. Teodorescu, and D. I. Stroe. 2021. A review of non-probabilistic machine learning-based state of health estimation techniques for lithium-ion battery. Applied Energy 300:117346. doi:10.1016/j.apenergy.2021.117346.
  • Sulzer, V., P. Mohtat, A. Aitio, S. Lee, Y. T. Yeh, and F. Steinbacher. 2021. The challenge and opportunity of battery lifetime prediction from field data. Joule 5 (8):1934–55. doi:10.1016/j.joule.2021.06.005.
  • Tong, Z., J. Miao, S. Tong, and Y. Lu. 2021. Early prediction of remaining useful life for lithium-ion batteries based on a hybrid machine learning method. Journal of Cleaner Production 317:128265. doi:10.1016/j.jclepro.2021.128265.
  • Vidal, C., P. Malysz, P. Kollmeyer, and A. Emadi. 2020. Machine learning applied to electrified vehicle battery state of charge and state of health estimation: State-of-the-art. Institute of Electrical and Electronics Engineers Access 8:52796–814. doi:10.1109/ACCESS.2020.2980961.
  • Wang, S., Y. Fan, S. Jin, P. Takyi-Aninakwa, and C. Fernandez. 2023. Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries. Reliability Engineering and System Safety 230:108920. doi:10.1016/j.ress.2022.108920.
  • Wang, S., F. Wu, P. Takyi-Aninakwa, C. Fernandez, D.-I. Stroe, and Q. Huang. 2023. Improved singular filtering-gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-current variations. Energy 284:284. doi:10.1016/j.energy.2023.128677.
  • Wang, X. J., B. Hu, X. Su, L. J. Xu, and D. Zhu. 2024. State of health estimation for lithium-ion batteries using random forest and gated recurrent unit. Journal of Energy Storage 76:109796. doi:10.1016/j.est.2023.109796.
  • Wang, Y. X., J. G. Zhu, L. Cao, B. Gopaluni, and Y. K. Cao. 2023. Long short-term memory network with transfer learning for lithium-ion battery capacity fade and cycle life prediction. Applied Energy 350:121660. doi:10.1016/j.apenergy.2023.121660.
  • Wei, Y., and D. Wu. 2023. State of health and remaining useful life prediction of lithium-ion batteries with conditional graph convolutional network. Expert Systems with Applications 238 (D):122041. doi:10.1016/j.eswa.2023.122041.
  • Wencan, Z., H. Hancheng, L. Taotao, Y. Jiangfeng, X. Yi, and L. Zhuoru. 2024. Lithium battery state of health prognostication employing multi-model fusion approach based on image coding of charging voltage and temperature data. Social Science Research Network. doi:10.2139/ssrn.4704399.
  • Wu, T. Z., Y. H. Huang, Y. H. Xu, J. C. Jiang, S. Z. Liu, and Z. H. Li. 2023. SOH prediction for lithium-ion battery based on improved support vector regression. International Journal of Green Energy 20 (3):227–36. doi:10.1080/15435075.2022.2027773.
  • Xiao, S., P. Y. Liu, K. Chen, K. Liu, G. Q. Gao, and G. N. Wu. 2023. Battery state of health prediction based on voltage intervals, BP neural network and genetic algorithm. International Journal of Green Energy 21 (8):1743–56. doi:10.1080/15435075.2023.2264959.
  • Xu, X. D., S. J. Tang, X. B. Han, L. G. Lu, Y. Wu, C. Q. Yu, X. Y. Sun, J. Xie, X. N. Feng, and M. G. Ouyang. 2023. Fast capacity prediction of lithium-ion batteries using aging mechanism-informed bidirectional long short-term memory network. Reliability Engineering and System Safety 234:109185. doi:10.1016/j.ress.2023.109185.
  • Xue, Q., J. Q. Li, Y. S. Xiao, Z. X. Chai, Z. M. Liu, and J. W. Chen. 2023. A flexible deep convolutional neural network coupled with progressive training framework for online capacity estimation of lithium-ion batteries. Journal of Cleaner Production 397:136575. doi:10.1016/j.jclepro.2023.136575.
  • Yao, J., and T. Han. 2023. Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data. Energy 271:271. doi:10.1016/j.energy.2023.127033.
  • Zhang, D., S. Dey, H. E. Perez, and S. J. Moura. 2020. Real-time capacity estimation of lithium-ion batteries utilizing thermal dynamics. IEEE Transactions on Control Systems Technology 28 (3):992–1000. doi:10.1109/TCST.2018.2885681.
  • Zhang, S., S. Wu, G. Cao, and X. Zhang. 2023. Capacity estimation for lithium-ion battery via a novel health indicator extracted from partial constant voltage charging curve. Journal of Cleaner Production 409:137220. doi:10.1016/j.jclepro.2023.137220.
  • Zhu, M. Y., Q. Ouyang, Y. Wan, and Z. S. Wang. 2023. Remaining useful life prediction of lithium-ion batteries: A hybrid approach of Grey-Markov chain model and improved gaussian process. IEEE Journal of Emerging and Selected Topics in Power Electronics 11 (1):143–53. doi:10.1109/JESTPE.2021.3098378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.