178
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Integrated Mechanical-Economic–Environmental Quality of Performance for Natural Fibers for Polymeric-Based Composite Materials

, &
Pages 651-659 | Published online: 06 Oct 2016

References

  • Abdal-hay, A., N. P. G. Suardana, D. Y. Jung, K.-S. Choi, and J. K. Lim. 2012. Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. International Journal of Precision Engineering and Manufacturing 13: 1199–1206. doi:10.1007/s12541-012-0159-3.
  • Abral, H., D. Kadriadi, A. Rodianus, P. Mastariyanto, S. Arief, S. M. Sapuan, and M. R. Ishak. 2014. Mechanical properties of water hyacinth fibers–polyester composites before and after immersion in water. Materials & Design 58: 125–129. doi:10.1016/j.matdes.2014.01.043.
  • Abu-Sharkh, B., and H. Hamid. 2004. Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: Mechanical and thermal analysis. Polymer Degradation and Stability 85: 967–973. doi:10.1016/j.polymdegradstab.2003.10.022.
  • Alawar, A., A. M. Hamed, and K. Al-Kaabi. 2009. Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering 40: 601–606. doi:10.1016/j.compositesb.2009.04.018.
  • Al-Khanbashi, A., Al-Kaabi, K. & Hammami, A. 2005. Date palm fibers as polymeric matrix reinforcement: Fiber characterization. Polymer composites, 26, 486–497.
  • AL-Oqla, F. M., O. Y. Alothman, M. Jawaid, S. Sapuan, and M. Es-Saheb. 2014a. Processing and properties of date palm fibers and its composites. In: Hakeem, K. R., Jawaid, M. & Rashid, U. (eds.) Biomass and bioenergy. Cham: Springer.
  • AL-Oqla, F. M., and M. T. Hayajneh. 2007. A design decision-making support model for selecting suitable product color to increase probability. In Design Challenge Conference: Managing Creativity, Innovation, and Entrepreneurship, Amman, Jordan, : Yarmouk Youniversity, Jordan.
  • Al-Oqla, F. M., and A. A. Omar. 2012. A decision-making model for selecting the GSM mobile phone antenna in the design phase to increase over all performance. Progress In Electromagnetics Research C 25: 249–269. doi:10.2528/PIERC11102702.
  • Al-Oqla, F. M., and A. A. Omar. 2015. An expert-based model for selecting the most suitable substrate material type for antenna circuits. International Journal of Electronics, 102: 1044–1055.
  • AL-Oqla, F. M., and M. S. Sapuan. 2015. Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. Journal of the Minerals Metals and Materials Society, 67: 2450–2463. doi:10.1007/s11837-015-1548-8.
  • AL-Oqla, F. M., M. S. Sapuan, M. R. Ishak, and N. A. Aziz. 2014b. Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: Date palm fibers as a case study. BioResources 9: 4608–4621. doi:10.15376/biores.9.3.4608-4621.
  • AL-Oqla, F. M., M. S. Sapuan, M. R. Ishak, and A. A. Nuraini. 2015a. Decision making model for optimal reinforcement condition of natural fiber composites. Fibers and Polymers 16: 153–163. doi:10.1007/s12221-015-0153-3.
  • AL-Oqla, F. M., M. S. Sapuan, M. R. Ishak, and A. A. Nuraini. 2015b. Selecting natural fibers for bio-based materials with conflicting criteria. American Journal of Applied Sciences 12: 64–71. doi:10.3844/ajassp.2015.64.71.
  • AL-Oqla, F. M., S. Sapuan, T. Anwer, M. Jawaid, and M. Hoque. 2015c. Natural fiber reinforced conductive polymer composites as functional materials: A review. Synthetic Metals 206: 42–54. doi:10.1016/j.synthmet.2015.04.014.
  • AL-Oqla, F. M., S. Sapuan, M. Ishak, and A. Nuraini. 2015d. A decision-making model for selecting the most appropriate natural fiber–Polypropylene-based composites for automotive applications. Journal of Composite Materials. doi:10.1177/0021998315577233.
  • AL-Oqla, F. M., S. Sapuan, M. Ishak, and A. Nuraini. 2015e. Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Computers and Electronics in Agriculture 113: 116–127. doi:10.1016/j.compag.2015.01.011.
  • AL-Oqla, F. M., S. Sapuan, M. R. Ishak, and A. A. Nuraini. 2014c. A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources 10: 299–312. doi:10.15376/biores.10.1.299-312.
  • AL-Oqla, F. M., and S. M. Sapuan 2014a. Enhancement selecting proper natural fiber composites for industrial applications. In Postgraduate Symposium on Composites Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014, 28/01/2014, Putrajaya, Selangor, Malaysia. UPM, Malaysia.
  • AL-Oqla, F. M., and S. M. Sapuan. 2014b. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production 66: 347–354. doi:10.1016/j.jclepro.2013.10.050.
  • Alves, C., P. Ferrão, A. Silva, L. Reis, M. Freitas, L. Rodrigues, and D. Alves. 2010. Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production 18: 313–327. doi:10.1016/j.jclepro.2009.10.022.
  • Al-Widyan, M. I., and F. M. Al-Oqla. 2011. Utilization of supplementary energy sources for cooling in hot arid regions via decision-making model. International Journal of Engineering Research and Applications 1: 1610–1622.
  • Al-Widyan, M. I., and F. M. Al-Oqla. 2014. Selecting the most appropriate corrective actions for energy saving in existing buildings A/C in hot arid regions. Building Simulation 7: 537–545. doi:10.1007/s12273-013-0170-3.
  • Arbelaiz, A., G. Cantero, B. Fernandez, I. Mondragon, P. Ganan, and J. Kenny. 2005. Flax fiber surface modifications: Effects on fiber physico mechanical and flax/polypropylene interface properties. Polymer Composites 26: 324–332. doi:10.1002/pc.20097.
  • Das, B., K. Chakrabarti, S. Tripathi, and A. Chakraborty. 2014. Review of Some Factors Influencing Jute Fiber Quality. Journal of Natural Fibers 11: 268–281. doi:10.1080/15440478.2014.880103.
  • Dweiri, F., and F. M. Al-Oqla. 2006. Material selection using analytical hierarchy process. International Journal of Computer Applications in Technology 26: 182–189. doi:10.1504/IJCAT.2006.010763.
  • Ghosh, A., and S. Das. 2013. Raw jute grading by multi-criteria decision making method. Journal of Natural Fibers 10: 136–146. doi:10.1080/15440478.2012.763203.
  • Hajiha, H., M. Sain, and L. H. Mei. 2014. Modification and characterization of hemp and sisal fibers. Journal of Natural Fibers 11: 144–168. doi:10.1080/15440478.2013.861779.
  • Jawaid, M., and H. Abdul Khalil. 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers 86: 1–18. doi:10.1016/j.carbpol.2011.04.043.
  • Khalid Rehman Hakeem, Mohammad Jawaid & Rashid, U. 2014. Biomass and Bioenergy: Processing and Properties. Cham: Springer International Publishing.
  • Mir, A., R. Zitoune, F. Collombet, and B. Bezzazi. 2010. Study of mechanical and thermomechanical properties of jute/epoxy composite laminate. Journal of Reinforced Plastics and Composites 29: 1669–1680. doi:10.1177/0731684409341672.
  • Mirmehdi, S. M., Zeinaly, F. & Dabbagh, F. 2014. Date palm wood flour as filler of linear low-density polyethylene. Composites Part B: Engineering, 56, 137–141.
  • Mohanty, J. R., Das, S. N., Das, H. C. & Swain, S. K. 2013. Effective mechanical properties of polyvinylalcohol biocomposites with reinforcement of date palm leaf fibers. Polymer composites, 34, 959–966.
  • Nasser, R. A. & Al-Mefarrej, H. A. 2011. Midribs of date palm as a raw material for wood-cement composite ndustry in Saudi Arabia. World Applied Sciences Journal, 15, 1651–1658.
  • Niu, P., B. Liu, X. Wei, X. Wang, and J. Yang. 2011. Study on mechanical properties and thermal stability of polypropylene/hemp fiber composites. Journal of Reinforced Plastics and Composites 30: 36–44. doi:10.1177/0731684410383067.
  • Sapuan, S. M., F.-L. Pua, Y. A. El-Shekeil, and F. M. AL-Oqla. 2013. Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Materials & Design 50: 467–470. doi:10.1016/j.matdes.2013.03.013.
  • Thakur, V., A. Singha, and M. Thakur. 2012. Green composites from natural fibers: Mechanical and chemical aging properties. International Journal of Polymer Analysis and Characterization 17: 401–407. doi:10.1080/1023666X.2012.668665.
  • Thakur, V., A. Singha, and M. Thakur. 2013a. Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. International Journal of Polymeric Materials and Polymeric Biomaterials 62: 226–230. doi:10.1080/00914037.2011.641694.
  • Thakur, V. K., and A. Singha. 2010. Mechanical and water absorption properties of natural fibers/polymer biocomposites. Polymer-Plastics Technology and Engineering 49: 694–700. doi:10.1080/03602551003682067.
  • Thakur, V. K., and M. K. Thakur. 2014a. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers 109: 102–117. doi:10.1016/j.carbpol.2014.03.039.
  • Thakur, V. K., and M. K. Thakur. 2014b. Recent Advances in graft copolymerization and applications of chitosan: A review. ACS Sustainable Chemistry & Engineering 2: 2637–2652. doi:10.1021/sc500634p.
  • Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2013b. Development of functionalized cellulosic biopolymers by graft copolymerization. International Journal of Biological Macromolecules 62: 44–51. doi:10.1016/j.ijbiomac.2013.08.026.
  • Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2013c. Graft copolymers from cellulose: Synthesis, characterization and evaluation. Carbohydrate Polymers 97: 18–25. doi:10.1016/j.carbpol.2013.04.069.
  • Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2013d. Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydrate Polymers 98: 820–828. doi:10.1016/j.carbpol.2013.06.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.