533
Views
15
CrossRef citations to date
0
Altmetric
Articles

Moisture and wetting properties of thermal insulation materials based on hemp fiber, cellulose and mineral wool in a loose state

ORCID Icon, ORCID Icon &

References

  • Allin, S. 2012. Building with hemp. Kenmare, Ireland : Seed Press.
  • Asdrubali, F., F. D’Alessandro, and S. Schiavoni. 2015. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies 4:1–17. doi:10.1016/j.susmat.2015.05.002.
  • Barnat-Hunek, D., P. Smarzewski, and P. Brzyski. 2017. Properties of hemp-flax composites for use in the building industry. Journal of Natural Fibers 14:410–25. doi:10.1080/15440478.2016.1212764.
  • Bastos de Souza, J., and E. Pontes de Deus. 2014. Damage mechanics applied for steel reinforcements in concrete structures under corrosion. Procedia Materials Science 3:2000–05. doi:10.1016/j.mspro.2014.06.322.
  • Bezpalko, N. 2009. Zastosowanie techniki TDR do badania procesów przenoszenia masy i energii przez wybrane przegrody budowlane, PhD thesis, Lublin (in Polish).
  • Bevan, R. and T. Woolley. 2010. Hemp Lime Construction: A Guide to Building with Hemp Lime Composites. Bracknell.
  • Bigelow, W. C., D. L. Pickett, and W. A. J. Zisman. 1946. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1(6):513–38. doi:10.1016/0095-8522(46)90059-1.
  • Bogosłowski, W. 1989. Procesy cieplne i wilgotnościowe w budynkach. Warszawa: Arkady. (in Polish).
  • Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in multimolecular layers. Contribution from the Burbau of Chemistry and Soils and George Washington University:309–19.
  • Brzyski, P., D. Barnat-Hunek, Z. Suchorab, and G. Łagód. 2017. Composite materials based on hemp and flax for low-energy buildings. Materials 10(5):510. doi:10.3390/ma10050510.
  • Cerolini, S., M. D’Orazio, C. Di Perna, and A. Stazi. 2009. Moisture buffering capacity of highly absorbing materials. Energy and Building 41:164–68. doi:10.1016/j.enbuild.2008.08.006.
  • Collet, F., F. Achchaq, K. Djellab, L. Marmoret, and H. Beji. 2011. Water vapour properties of two hemp wools manufactured with different treatments. Construction and Building Materials 25(2):1079–85. doi:10.1016/j.conbuildmat.2010.06.069.
  • Cong Kou, S., C. Sun Poon, and M. Etxeberria. 2014. Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cement and Concrete Composites 53:73–82. doi:10.1016/j.cemconcomp.2014.06.001.
  • Fuentes, C. A., K. Beckers, H. Pfeiffer, L. Q. N. Tran, C. Dupont-Gillain, I. Verpoest, and A. W. Van Vuure. 2014. Equilibrium contact angle measurements of natural fibers by an acoustic vibration technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects 455:164–73. doi:10.1016/j.colsurfa.2014.04.054.
  • Gümüşkaya, E., M. Usta, and M. Balaban. 2007. Carbohydrate components and crystalline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp. Bioresour. Technol., 98: 491–497. doi:10.1016/j.biortech.2006.02.031
  • Hunter, R. J. 2001. Foundations of Colloid Science. 2nd ed.. Oxford: Clarendon Press.
  • Hurtado, P. L., A. Rouilly, C. Raynaud, and V. Vandenbossche. 2016a. The properties of cellulose insulation applied via the wet spray process. Building and Environment 107:43–51. doi:10.1016/j.buildenv.2016.07.017.
  • Hurtado, P. L., A. Rouilly, V. Vandenbossche, and C. Raynaud. 2016b. A review on the properties of cellulose fibre insulation. Building and Environment 96:170–77. doi:10.1016/j.buildenv.2015.09.031.
  • Johansson, P., T. Svensson, and A. Ekstrand-Tobin. 2013. Validation of critical moisture conditions for mould growth on building materials. Building and Environment 62:201–09. doi:10.1016/j.buildenv.2013.01.012.
  • Korjenic, A., J. Zachb and, J. Hroudová. 2016. The use of insulating materials based on natural fibers in combination with plant facades in building construction. Energy and Buildings 116: 45–58. doi:10.1016/j.enbuild.2015.12.037
  • Kosiński, P., P. Brzyski, A. Szewczyk, and W. Motacki. 2017. Thermal properties of raw hemp fiber as a loose-fill insulation material. Journal of Natural Fibers:1–14. Published Online. September 20, 2017. doi:10.1080/15440478.2017.1361371
  • Latif, E., M. A. Ciupala, S. Tucker, D. C. Wijeyesekera, and D. J. Newport. 2015. Hygrothermal performance of wood-hemp insulation in timber frame wall panels with and without a vapour barier. Building and Environment 92:122–34. doi:10.1016/j.buildenv.2015.04.025.
  • Latif, E., S. Tucker, M. A. Ciupala, D. C. Wijeyesekera, and D. Newport. 2014. Hygric properties of hemp bio-insulations with differing compositions. Construction and Building Materials 66:702–11. doi:10.1016/j.conbuildmat.2014.06.021.
  • Latif, E., S. Tucker, M. A. Ciupala, D. C. Wijeyesekera, D. J. Newport, and M. Pruteanu. 2016. Quasi steady state and dynamic hygrothermal performance of fibrous hemp and stone wool insulations: two innovative laboratory based investigations. Building and Environment 95:391–404. doi:10.1016/j.buildenv.2015.10.006.
  • Neumann, A. W., and R. J. Good. 1979. Techniques of Measuring Contact Angles. In: Surface and colloid science: experimental methods, Vol. 11, eds., R. J. Good, and R. R. Stromberg. New York: Plenum Publishing.
  • O’Brien, F. E. M. 1948. The control of humidity by saturated salt solutions. Journal of Scientific Instruments 25(3):73–76. doi:10.1088/0950-7671/25/3/305.
  • Orosz, M., B. Nagy, and E. Tóth. 2017. Hygrothermal behavior of ultra-lightweight polystyrene concrete. Pollack Periodica 12(2):53–66. doi:10.1556/606.2017.12.2.5.
  • Rirsch, E., and Z. Zhang. 2010. Rising damp in masonry walls and the importance of mortar properties. Construction and Building Materials 24(10):1815–20. doi:10.1016/j.conbuildmat.2010.04.024.
  • Rode, C. 1998. Organic insulation materials, the effect on indoor humidity, and the necessity of a vapor barrier. Proc. Therm. Perform. Exterior Envelope Build VII:109–21.
  • Schellbach, S. L., S. Monteiro, and J. Drelich. 2015. A novel method for contact angle measurements on natural fibers. Materials Letters 164. doi:10.1016/j.matlet.2015.11.039.
  • Smith, G. N., I. Grillo, S. E. Rogers, and J. Eastoe. 2015. Surfactants with colloids: adsorption or absorption? Journal of Colloid and Interface Science 449:205–14. doi:10.1016/j.jcis.2014.12.048.
  • Stanwix, W. and A. Sparrow. 2014. The hempcrete book. Designing and building with hemp-lime. Green Books, England.
  • Stevulova, N., L. Kidalova, J. Cigasova, J. Junak, A. Sicakova, and E. Terpakova. 2013. Lightweight composites containing hemp hurds. Procedia Engineering 65:69–74. doi:10.1016/j.proeng.2013.09.013
  • Strandberg-de Bruijn, P., and P. Johansson. 2014. Moisture transport properties of lime-hemp concrete determined over the complete moisture range. Biosystems Engineering 122:31–41. doi:10.1016/j.biosystemseng.2014.03.001.
  • Suchorab, Z., D. Barnat-Hunek, and H. Sobczuk. 2011. Influence of moisture on heat conductivity coefficient of aerated concrete. Ecological Chemistry and Engineering S 42(1):111–20.
  • Taggart, A. F., T. C. Taylor, and C. R. Ince. 1930. Experiments with Flotation Agents. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers 87:285–386.
  • Tamborski, Z. 2009. Wpływ temperatury na przebieg izoterm sorpcji wody przez cukier. Żywność. Nauka. Technologia. Jakość 5(66):72–82 (in Polish).
  • Ueda, A., C. Iba, and S. Hokoi. 2015. Frost damage to roof tiles: ice distribution in freeze-thaw experiment. Energy Procedia 78:2542–47. doi:10.1016/j.egypro.2015.11.271.
  • Vrána, T., and F. Björk. 2009. Frost formation and condensation in stone–Wool insulations. Construction and Building Materials 23(5):1775–87. doi:10.1016/j.conbuildmat.2008.10.014.
  • Vrána, T., and K. Gudmundsson. 2010. Comparison of fibrous insulations – cellulose and stone wool in terms of moisture properties resulting from condensation and ice formation. Construction and Building Materials 24(7):1151–57. doi:10.1016/j.conbuildmat.2009.12.026.
  • Wilhelmy, L. 1863. Ueber die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers [On the dependence of capillarity constants of alcohols from the substance and shape of the wetted solid bodies]. Ann. Phys. 195:177–217.
  • Wójcik, R., and M. Bomberg. 2016. On interior rehabilitation of buildings with historic facades. Journal of Building Physics 40(2):144–61. doi:10.1177/1744259116662280.
  • Wójcik, R., A. Panuś, M. Tunkiewicz, and M. Hamdy. 2017. Influence of chemical damp proof cream on the capillary action and microstructure of mortars. Energy Procedia 132:670–75. doi:10.1016/j.egypro.2017.10.004.
  • Yuan, Y., and T. R. Lee. 2013. Contact angle and wetting properties. In Surface science techniques, G. Bracco, and B. Holst, eds., Springer Series, Surface Sciences, 51. Berlin and Heidelberg: Springer Berlin Heidelberg, 3–34. doi:10.1007/978-3-642-34243-1
  • Zimniewska, M., J. Mańkowski, and M. Władyka-Przybylak 2012. Włókna naturalne, rodzaje, właściwości, kierunki zastosowań. Biokompozyty z surowców odnawialnych, Praca zbiorowa pod redakcją S. Kuciela, H. Rydarowskiego, Kraków, 16–34 (in Polish).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.