393
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Insitu Self-Assembly of Bacterial Cellulose on Banana Fibers Extracted from Peels

ORCID Icon, , , , & ORCID Icon

References

  • Akil, H. M., M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak, and A. Abu Bakar. 2011. Kenaf fiber reinforced composites: A review. Materials & Design 32 (8):4107–21. doi:10.1016/j.matdes.2011.04.008.
  • Anhwange, B., J. Ugye, and T. D. Nyiatagher. 2009. Chemical composition of Musa sepientum (Banana) peels, Journal of Food Technology, 6: 263-266. URL: http://medwelljournals.com/abstract/?doi=jftech.2008.263.266.
  • Baley, C. 2002. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffnes increase, Composites Part A: Applied Science and Manufacturing 33 (7):939-948. doi.org/10.1016/S1359-835X(02)00040-4. Elsevier
  • Bhagwat, P. M., M. Ramachandran, and P. Raichurkar. 2017. Mechanical properties of hybrid glass/carbon fiber reinforced epoxy composites. Materials Today: Proceedings 4 (8):7375–80. doi:10.1016/j.matpr.2017.07.067.
  • Bhatnagar, R., G. Gupta, and S. Yadav. 2015. A review on composition and properties of banana fibers. International Journal of Scientific & Engineering Research 6 (5):49–52.
  • Bielecki, S. K. A., M. Turkiewicz, and H. Kalinowska. 2005. Bacterial cellulose. Polysaccharides I: polysaccharides from prokaryotes. In Biopolymers online, ed. E. Vandamme and S. De Baets, 37–46. Weinheim, Germany: Wiley-VCH.
  • Castro, C., A. Vesterinen, R. Zuluaga, G. Caro, E. Filpponen, O. J. Rojas, G. Kortaberria, and P. Ganan. 2014. In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: Effect of chemical crosslinking. Cellulose 21 (3):1745–56. doi:10.1007/s10570-014-0170-1.
  • Chang, W.-S., and H.-H. Chen. 2014. Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocolloids. doi:10.1016/j.foodhyd.2014.12.009.
  • Charlet, K., S. Eve, J. P. Jernot, M. Gomina, and J. Breard. 2009. Tensile deformation of a flax fiber. Procedia Engineering 1 (1):233–36. doi:10.1016/j.proeng.2009.06.055.
  • Conglai, L., Q. Dongping, W. Tong, Y. Jun, J. Lili, and F. Zhuangjun. 2014. Nitrogen‐doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Advanced Functional Materials 24 (25):3953–61. doi:10.1002/adfm.201304269.
  • Deshpande Abhijit, P., M. Bhaskar Rao, and C. Lakshmana Rao. 2000. Extraction of bamboo fibers and their use as reinforcement in polymeric composites. Journal of Applied Polymer Science 76 (1):83–92. doi:10.1002/(SICI)1097-4628(20000404)76:1<83::AID-APP11>3.0.CO;2-L.
  • Elanchezhian, C., B. Vijaya Ramnath, and J. Hemalatha. 2014. Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates and temperatures. Procedia Materials Science 6:1405–18. doi:10.1016/j.mspro.2014.07.120.
  • Feng, X., N. Ullah, X. Wang, X. Sun, C. Li, Y. Bai, L. Chen, and Z. Li. 2015. Characterization of bacterial cellulose by gluconacetobacter hansenii CGMCC 3917. Journal of Food Science 80 (10):E2217–27. doi:10.1111/1750-3841.13010.
  • Gindl, W., and J. Keckes. 2005. All-cellulose nanocomposite, Polymer. Elsevier: Science Direct. 46(23):10221-10225. https://doi.org/10.1016/j.polymer.2005.08.040
  • Guhados, G., W. Wan, and J. L. Hutter. 2005. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21 (14):6642–46. doi:10.1021/la0504311.
  • Hill, C., A. Norton, and G. Newman. 2009. The water vapor sorption behavior of natural fibers, Journal of Applied Polymer Science 112(3):1524 - 1537. Wiley. http://www.interscience.wiley.com/jpages/0021-8995/
  • Ho, P. M., H. Wang, J. Lee, C. K. Ho, K. T. Lau, L. Jinsong, and D. Hui. 2012. Critical factors on manufacturing processes of natural fibre composites, Composites Part B: Engineering, 43(8) :3549-3562. https://doi.org/10.1016/j.compositesb.2011.10.001 Science Direct, Elsevier.
  • Hroudova, J., and J. Zach. 2014. Acoustic and thermal insulating materials based on natural fibres used in floor construction. International Scholarly and Scientific Research & Innovation, World Academy of Science Engineering and Technologywww.waset.org/World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering 8(11): 1152-1155. doi.org/10.5281/zenodo.1096817.
  • Hubbe, M. A., P. Tayeb, M. Joyce, P. Tyagi, M. Kehoe, K. Dimic-Misic, and L. Pal. 2017. Rheology of nanocellulose-rich aqueous suspensions: A review. BioResources 12 (4): 9556-9661.
  • Iguchi, M., S. Yamanaka, and A. Budhiono. 2000. Bacterial cellulose—A masterpiece of nature’s arts. Journal of Materials Science 35 (2):261–70. doi:10.1023/a:1004775229149.
  • Indira, K. N., J. Parameswaranpillai, and S. Thomas. 2013. Mechanical properties and failure topography of banana fiber PF macrocomposites fabricated by RTM and CM techniques. ISRN Polymer Science 2013:8. doi:10.1155/2013/936048.
  • Jawaid, M., and H. P. S. Abdul Khalil. 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers 86 (1):1–18. doi:10.1016/j.carbpol.2011.04.043.
  • John, M. J., and S. Thomas. 2008. Biofibres and biocomposites. Carbohydrate Polymers 71 (3):343–64. doi:10.1016/j.carbpol.2007.05.040.
  • Jordan, W., and P. Chester. 2017. Improving the properties of banana fiber reinforced polymeric composites by treating the fibers. Procedia Engineering 200:283–89. doi:10.1016/j.proeng.2017.07.040.
  • Kalia, S., A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, J. Njuguna, and E. Nassiopoulos. 2011. Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science 2011. doi:10.1155/2011/837875.
  • Kongruang, S. 2008. Bacterial cellulose production by acetobacter xylinum strains from agricultural waste products, Vol. 148. Humana Press Inc Print .
  • Korjenic, A., V. Petránek, J. Zach, and J. Hroudová. 2011. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy and Buildings 43 (9):2518–23. doi:10.1016/j.enbuild.2011.06.012.
  • Lau, K.-T., P.-Y. Hung, M.-H. Zhu, and D. Hui. 2018. Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering 136:222–33. doi:10.1016/j.compositesb.2017.10.038.
  • Lee, K.-Y., P. Bharadia, J. J. Blaker, and A. Bismarck. 2012. Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Composites Part A: Applied Science and Manufacturing 43 (11):2065–74. doi:10.1016/j.compositesa.2012.06.013.
  • Lv, P., Q. Feng, Q. Wang, G. Li, D. Li, and Q. Wei. 2016. Biosynthesis of bacterial cellulose/carboxylic multi-walled carbon nanotubes for enzymatic biofuel cell application. Materials 9 (3):183. doi:10.3390/ma9030183.
  • Lv, P., H. Zhou, A. Mensah, Q. Feng, D. Wang, X. Hu, Y. Cai, L. A. Lucia, D. Li, and Q. Wei. 2018. A highly flexible self-powered biosensor for glucose detection by epitaxial deposition of gold nanoparticles on conductive bacterial cellulose. Chemical Engineering Journal. doi:10.1016/j.cej.2018.06.098.
  • Marechal, Y., and H. Chanzy. 2000. The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. Journal of Molecular Structure 183–96. doi:10.1016/S0022-2860(99)00389-0.
  • Mohanty, K. A., M. Misra, and G. Hinrichsen. 2000. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276–277 (1):1–24. doi:10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.
  • Monteiro, S. N., D. Felipe Perissé, A. Lopes, S. Ferreira, and D. C. O. Nascimento. 2009. Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly. JOM 61 (1):17–22. doi:10.1007/s11837-009-0004-z.
  • Mukhopadhyay, S., D. Ph, R. Fangueiro, A. Yusuf, and Ü. Şentürk. 2008. Banana fibers – variability and fracture behaviour, Journal of Engineered Fibers and Fabrics, 3(2) http://www.jeffjournal.org.
  • Naeem, M., P. Lv, H. Zhou, T. Naveed, and Q. Wei. 2018a. A novel in situ self-assembling fabrication method for bacterial cellulose-electrospun nanofiber hybrid structures. Polymers 10 (7):712. doi:10.3390/polym10070712.
  • Naeem, M. A., M. Alfred, P. Lv, H. Zhou, and Q. Wei. 2018b. Three-dimensional bacterial cellulose-electrospun membrane hybrid structures fabricated through in-situ self-assembly. Cellulose 25 (12):6823–30. doi:10.1007/s10570-018-2084-9.
  • Oksman, K., M. Skrifvars, and J. F. Selin. 2003. Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology 63 (9):1317–24. doi:10.1016/S0266-3538(03)00103-9.
  • Pickering, S. J. 2006. Recycling technologies for thermoset composite materials—Current status, Composites Part A: Applied Science and Manufacturing, 37(8): 1206-1215. ScienceDirect: Elsevier. ISSN 1359-835X,https://doi.org/10.1016/j.compositesa.2005.05.030.(http://www.sciencedirect.com/science/article/pii/S1359835X05002101).
  • Pommet, M., J. Juntaro, J. Y. Y. Heng, A. Mantalaris, A. F. Lee, K. Wilson, G. Kalinka, M. S. P. Shaffer, and A. Bismarck. 2008. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9 (6):1643–51. doi:10.1021/bm800169g.
  • Prashanth, S., K. Subbaya, K. Nithin, and S. Sachhidananda. 2017. Fiber reinforced composites - A review, J. Material Sci Eng 6(3): 341 DOI: 10.4172/2169-0022.1000341 ISSN: 2169-0022 https://www.omicsonline.org/peer-reviewed/fiber-reinforced-composites-a-review-89617.html.
  • Qiu, K., and A. Netravali. 2017. In situ produced bacterial cellulose nanofiber-based hybrids for nanocomposites. Fibers 5 (3):31. doi:10.3390/fib5030031.
  • Ross, P., R. Mayer, and M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiological Reviews 55 (1):35–58.
  • Sadanand, V., N. Rajini, B. Satyanarayana, and A. Varada Rajulu. 2016. Preparation and properties of cellulose/silver nanoparticle composites with in situ-generated silver nanoparticles using Ocimum sanctum leaf extract. International Journal of Polymer Analysis and Characterization 21 (5):408–16. doi:10.1080/1023666X.2016.1161100.
  • Salas, C., T. Nypelö, C. Rodriguez-Abreu, C. Carrillo, and O. J. Rojas. 2014. Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid & Interface Science 19 (5):383–96. doi:10.1016/j.cocis.2014.10.003.
  • Sanjay, M. R., G. R. Arpitha, L. Laxmana Naik, K. Gopalakrishna, and B. Yogesha. 2016. Applications of natural fibers and its composites: An overview, Natural Resources 7(3)(2016), Article ID:64454,7 pages 10.4236/nr.2016.73011, Scientific Research Publishing Inc
  • Sano, M. B., A. D. Rojas, P. Gatenholm, and R. V. Davalos. 2010. Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers. Annals of Biomedical Engineering 38 (8):2475–84. doi:10.1007/s10439-010-9999-0.
  • Shah, N., M. Ul-Islam, W. A. Khattak, and J. K. Park. 2013. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydrate Polymers 98 (2):1585–98. doi:10.1016/j.carbpol.2013.08.018.
  • Shoda, M., and Y. Sugano. 2005. Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering 10 (1):1. doi:10.1007/bf02931175.
  • Toyosaki, H., T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, and F. Yoshinaga. 1995. Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Bioscience, Biotechnology, and Biochemistry 59 (8):1498–502. doi:10.1271/bbb.59.1498.
  • Ullah, H., H. Santos, and T. Khan. 2016. Applications of bacterial cellulose in food, cosmetics and drug delivery, Springer Nature Springer Fachmedien Wiesbaden GmbHCellulose (2016) 23:2291–2314. doi:10.1007/s10570-016-0986-y
  • Wan, W. K., J. L. Hutter, L. Milton, and G. Guhados. 2006. Bacterial cellulose and its nanocomposites for biomedical applications. In Cellulose nanocomposites, 221–41. American Chemical Society.
  • Wang, B., S. Panigrahi, L. Tabil, W. Crerar, S. Sokansanj, and L. Braun. 2003. Modification of flax fibers by chemical treatment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.