240
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Comparison of Different Hydrophobic Treatments for the Durability Improvement of Palmyra Natural Fiber Composites under Hydrothermal Ageing Environments

ORCID Icon, , &

References

  • ABAQUS/STANDARD. 2018. Analysis user’s manual. Vol. II, Johnston, RI: Simulia Corporation, Dassault Systemes.
  • ASTM D 570-98. 2018. Standard test method of water absorption. Accessed August 10, 2018. https://www.astm.org/Standards/D570.
  • Atiqah, A., M. Jawaid, M. R. Ishak, and S. M. Sapuan. 2017. Effect of alkali and silane treatments on mechanical and interfacial bonding strength of sugar palm fibers with thermoplastic polyurethane. Journal of Natural Fibers 15 (2):251–61. doi:10.1080/15440478.2017.1325427.
  • Balakrishna, A., D. N. Rao, and A. S. Rakesh. 2013. Characterization and modeling of process parameters on tensile strength of short and randomly oriented borassus flabellifer (Asian palmyra) fiber reinforced composite. Composites Part B Engineering 55:479–85. doi:10.1016/j.compositesb.2013.07.006.
  • Ballesteros, J. E. M., V. D. Santos, G. Marmol, M. Frias, and J. Fiorelli. 2017. Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose 24:2275–86. doi:10.1007/s10570-017-1253-6.
  • Bessadok, A., D. Langevin, F. Gouanve, and C. Chappey. 2009. Study of water sorption on modified agave fibers. Carbohydrate Polymers 76 (1):74–85. doi:10.1016/j.carbpol.2008.09.033.
  • Diniz, J. M. B. F., M. H. Gil, and J. A. A. M. Castro. 2004. Hornification-its origin and interpretation in wood pulps. Wood Science and Technology 37 (6):489–94. doi:10.1007/s00226-003-0216-2.
  • Eastman, E. D. 1928. Theory of the soret effect. Journal of the American Chemical Society 50:283–91. doi:10.1021/ja01389a007.
  • Ferreira, S., F. Silva, P. Lima, and R. Filho. 2016. Effect of hornification on the structure, tensile behavior and fiber matrix bond of sisal, jute and Curaua fiber cement based composite systems. Construction and Building Materials 139:551–61. doi:10.1016/j.conbuildmat.2016.10.004.
  • Ismail, M. R., A. M. Y. Ali, and M. H. Hassan. 2011. Effect of silane coupling agents on rice straw fiber/polymer composites. Applied Composite Materials 19 (3–4):409–425. doi: 10.1007/s10443-011-9214-y.
  • Jain, D., A. Mukherjee, and N. Kwatra. 2014. Local micromechanics of moisture diffusion in fiber reinforced polymer composites. International Journal of Heat and Mass Transfer 76:199–209. doi:10.1016/j.ijheatmasstransfer.2014.04.031.
  • Jain, D., A. Mukherjee, and N. Kwatra. 2015. Topological disorder of microstructure in fibre-reinforced polymer composites: Diffusion response. Journal of Reinforced Plastics and Composites 34 (1):49–59. doi:10.1177/0731684414562224.
  • Jain, D., I. Kamboj, T. K. Bera, A. S. Kang, and R. K. Singla. 2019. Experimental and numerical investigations on the effect of alkaline hornification on the hydrothermal ageing of agave natural fiber composites. International Journal of Heat and Mass Transfer 130:431–39. doi: 10.1016/j.ijheatmasstransfer.2018.10.106.
  • Kabir, M., H. Wang, K. T. Lau, and F. Cardona. 2012. Chemical treatments on plant- based natural fiber reinforced polymer composites: An overview. Composites Part B Engineering 43 (7):2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Kocak, D., and S. I. Mistik. 2015. The use of palm leaf fibers as reinforcement in composites. Biofiber Reinforcements in Composite Materials 273–81. doi:10.1533/9781782421276.2.273.
  • Krishnaiah, P., C. T. Ratnam, and S. Manickam. 2017. Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibers and their PP composites induced by the synergistic effects of alkali and high-intensity ultrasound (HIU) treatments. Ultrasonics Sonochemistry 34:729–42. doi:10.1016/j.ultsonch.2016.07.008.
  • Madhu, P., M. R. Sanja, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, and B. Yogesha. 2018. A review on synthesis and characterization of commercially available natural fibers: Part-I. Journal of Natural Fibers. doi:10.1080/15440478.2018.1453433.
  • Ming, C., T. Hitoshi, A. N. Nakagaito, M. Katoh, T. Ueki, G. Waterhouse, and Y. Lia. 2015. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products 65:27–35. doi:10.1016/j.indcrop.2014.11.048.
  • Moshiul, A. A. K. M., M. D. H. Beg, D. M. Reddy, M. R. Khan, and M. F. Mina. 2012. Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic acid) composites. Composites Part A: Applied Science and Manufacturing 43 (11):1921–29. doi:10.1016/j.compositesa.2012.06.012.
  • Mouhoubi, S., M. E. H. Bourahli, H. Osmani, and S. Abdeslam. 2017. Effect of alkali treatment on alfa fibers behavior. Journal of Natural Fibers 14 (2):239–49. doi:10.1080/15440478.2016.1193088.
  • Mylsamy, K., and I. Rajendran. 2011. The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated agave continuous fiber reinforced epoxy composites. Materials and Design 32:3076–84. doi:10.1016/j.matdes.2010.12.051.
  • Nakagaito, A. N., and H. Yano. 2007. Toughness enhancement of cellulose nano composites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–31. doi:10.1007/s10570-007-9168-2.
  • Nakano, T. 2010. Mechanism of microfibril contraction and anisotropicdimensional changes for cells in wood treated with aqueous NaOH solution. Cellulose 17:711–19. doi:10.1007/s10570-010-9414-x.
  • Platten, J. K. 2005. The soret effect: A review of recent experimental results. Journal of Applied Mechanics 73:5–15. doi:10.1115/1.1992517.
  • Shanmugam, D., and M. Thiruchitrambalam. 2013. Static and dynamic mechanical propertiesof alkali treated unidirectional continuous palmyra palm leaf stalk fiber/jute fiber reinforced hybrid polyester composites. Materials and Design 19 (3–4):409–25. doi:10.1016/j.matdes.2013.03.048.
  • Shen, C. H., and G. S. Springer. 1976. Moisture absorption and desorption of composite materials. Journal of Composite Materials 10:2–20. doi:10.1177/002199837601000101.
  • Sood, M., and G. Dwivedi. 2017. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum. doi:10.1016/j.ejpe.2017.11.005.
  • Starink, M. J., L. M. P. Starink, and A. R. Chambers. 2002. Moisture uptake in monolithic and composite materials: Edge correction for rectanguloid samples. Journal of Materials Science 37:287–94. doi:10.1023/A:1013692026782.
  • Sumi, S., N. Unnikrishnan, and L. Mathew. 2017. Surface modification of coir fibers for extended hydrophobicity and antimicrobial property for possible geotextile application. Journal of Natural Fibers 14 (3):335–45. doi:10.1080/15440478.2016.1209714.
  • Tian, F., Z. Zhong, and Y. Pan. 2018. Modeling of natural fiber reinforced composites under hygrothermal ageing. Composite Structures 200:144–52. doi:10.1016/j.compstruct.2018.05.083.
  • Torres, F. G., and M. L. Cubillas. 2005. Study of the interfacial properties of natural fiber reinforced polyethylene. Polymer Testing 24 (6):694–98. doi:10.1016/j.polymertesting.2005.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.