151
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of Cotton Fiber-derived Self-adherent Formed Porous-carbon Materials

&

References

  • Aldawsari, A. , Khan, M. A. , Hameed, B. H. , Alothman, Z. A. , Siddiqui, M. R. , & Ahmed, A. Y. B. H. , et al. (2017). Development of activated carbon from Phoenix dactylifera fruit pits: Process optimization, characterization, and methylene blue adsorption. Desalin Water Treat 62:273–81.
  • Benhouria, A., M. A. Islam, H. Zaghouane-Boudiaf, M. Boutahala, and B. H. Hameed. 2015. Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for methylene blue. Chemical Engineering Journal 270:621–30. doi:https://doi.org/10.1016/j.cej.2015.02.030.
  • Chan, O. S., W. H. Cheung, and G. McKay. 2011. Preparation and characterization of demineralised tyre derived activated carbon. Carbon 49:4674–87.
  • Cunliffe, A. M., and P. T. Williams. 1998. Properties of chars and activated carbons derived from the pyrolysis of used tyres. Environmental Technology 19 (12):1177–90. doi:https://doi.org/10.1080/09593331908616778.
  • Emilio, M. S., J. C. L. Alejandro, F. G. Beatriz, L. F. D. Juan, S. S. Roque, and L. U. Florentino. 2017. Carbon sponge-type nanostructures based on coaxial nitrogen-doped multiwalled carbon nanotubes grown by CVD using benzylamine as precursor. Carbon 115:409–21.
  • Ezechi, E. H., S. R. M. Kutty, A. Malakahmad, and M. H. Isa. 2015. Characterization and optimization of effluent dye removal using a new low cost adsorbent: Equilibrium, kinetics and thermodynamic study. Process Safety and Environmental Protection 98:16–32. doi:https://doi.org/10.1016/j.psep.2015.06.006.
  • Hachi, M., A. Chergui, A. Selatnia, and H. Cabana. 2016. Valorization of the spent biomass of Pleurotus mutilus immobilized as calcium alginate biobeads for methylene blue biosorption. Environmental Processes 3:413–30.
  • Huang, M. L., S. B. Mishra, and S. Q. Liu. 2017. Waste glass fiber fabric as a support for facile synthesis of microporous carbon to adsorb Cr(VI) from wastewater. ACS Sustainable Chemistry & Engineering 5 (9):8127–36. doi:https://doi.org/10.1021/acssuschemeng.7b01762.
  • Islam, M. A., M. Ahmed, W. Khanday, M. Asif, and B. H. Hameed. 2017. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicology and Environmental Safety 138:279–85.
  • Islam, M. A., S. Sabar, A. Benhouria, W. A. Khanday, M. Asif, and B. H. Hameed. 2017. Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption. Journal of the Taiwan Institute of Chemical Engineers 74:96–104. doi:https://doi.org/10.1016/j.jtice.2017.01.016.
  • Khan, T., M. H. Isa, M. R. U. Mustafa, H. Yeek-Chia, L. Baloo, T. S. B. Abd Manan, and M. O. Saeed. 2016. Cr (vi) adsorption from aqueous solution by an agricultural waste based carbon. RSC Advances 6:56365–74.
  • Liu, L. L., S. Kumar, Z. H. Wang, Y. He, J. Liu, and K. Cen. 2017. Catalytic effect of metal chlorides on coal pyrolysis and gasification part I. Combined TG-FTIR study for coal pyrolysis. Thermochimica Acta 655:331–36. doi:https://doi.org/10.1016/j.tca.2017.07.007.
  • Mohamad, A. N., and P. T. Williams. 2010. Activated carbons from acrylic textile waste. Journal of Analytical and Applied Pyrolysis 89:51–59.
  • Nasrullah, A., H. Khan, A. S. Khan, N. Muhammad, Z. Man, F. U. Khan, and Z. Ullah. 2016. Calligonum polygonoides biomass as a low-cost adsorbent: Surface characterization and methylene blue adsorption characteristics. . Desalination and Water Treatment. 57(16):7345–57. doi:https://doi.org/10.1080/19443994.2015.1024742.
  • Rutkowski, P. 2011. Pyrolysis of cellulose, xylan and lignin with the K2CO3 and ZnCl2 addition for bio-oil production. Fuel Processing Technology 92 (3):517–22. doi:https://doi.org/10.1016/j.fuproc.2010.11.006.
  • Wang, L. S., Y. Z. Zhang, H. Yang, and P. J. Gao. 2004. Quantitative estimate of the effect of cellulase components during degradation of cotton fibers. Carbohydrate Research 339 (4):819–24. doi:https://doi.org/10.1016/j.carres.2004.01.004.
  • Wen, C., Y. Wu, X. P. Chen, G. Jiang, and D. Liu. 2017. The pyrolysis and gasification performances of waste textile under carbon dioxide atmosphere. Journal of Thermal Analysis and Calorimetry 128:581–91.
  • Xia, M. L., X. H. Shao, Z. H. Sun, and Z. H. Xu. 2020. Conversion of cotton textile wastes into porous carbons by chemical activation with ZnCl2, H3PO4, and FeCl3. Environmental Science and Pollution Research. doi:https://doi.org/10.1007/s11356-020-08873-3.
  • Zamani, B., M. M. Svanstr, G. Peters, and T. Rydberg. 2014. A carbon footprint of textile recycling. Journal of Industrial Ecology. 19(4):676–87. doi:https://doi.org/10.1111/jiec.12208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.