373
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A Study Towards the Development of Salt Tolerant Upland Cotton (Gossypium Hirsutum L.)

, , , , &

References

  • Ahmad, S., N. Khan, M. Zaffar Iqbal, A. Hussain, and M. Hassan. 2002. Salt tolerance of cotton (Gossypium hirsutum L.). Asian Journal of Plant Sciences 1 (6):715–19. doi:10.3923/ajps.2002.715.719.
  • Akhtar, J., Z. A. Saqib, M. Sarfraz, I. Saleem, and M. A. Haq. 2010. Evaluating salt tolerant cotton genotypes at different levels of NaCl stress in solution and soil culture. Pakistan Journal of Botany 42 (4):2857–66.
  • Al‐Karaki, G. N. 2000. Growth, water use efficiency, and sodium and potassium acquisition by tomato cultivars grown under salt stress. Journal of Plant Nutrition 23 (1):1–8. doi:10.1080/01904160009381992.
  • Allen, R. G., K. J. Farmer, and R. Sohal. 1983. Effect of catalase inactivation on levels of inorganic peroxides, superoxide dismutase, glutathione, oxygen consumption and life span in adult houseflies (Musca domestica). Biochemical Journal 216 (2):503–06. doi:10.1042/bj2160503.
  • Ashfaq, A., N. Hussain, and M. Athar. 2015. Role of potassium fertilizers in plant growth, crop yield and quality fiber production of cotton-an overview. FUUAST Journal of Biology 5 (1):27.
  • Bose, J., A. Rodrigo-Moreno, and S. Shabala. 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany 65 (5):1241–57. doi:10.1093/jxb/ert430.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1–2):248–54. doi:10.1016/0003-2697(76)90527-3.
  • Bublitz, M., H. Poulsen, J. Preben Morth, and P. Nissen. 2010. In and out of the cation pumps: P-type ATPase structure revisited. Current Opinion in Structural Biology 20 (4):431–39. doi:10.1016/j.sbi.2010.06.007.
  • Cuin, T. A., J. Bose, G. Stefano, D. Jha, M. Tester, S. Mancuso, and S. Shabala. 2011. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: In planta quantification methods. Plant, Cell & Environment 34 (6):947–61. doi:10.1111/j.1365-3040.2011.02296.x.
  • Eaton, F. M., and V. P. Sokoloff. 1935. Absorbed sodium in soils as affected by the soil-water ratio. Soil Science 40 (3):237–48. doi:10.1097/00010694-193509000-00005.
  • Falconer, D. S., and T. F. Mackay. 1996. Introduction to quantitative genetics. “Essex. UK: Longman Group. 1996.
  • Farhangi-Abriz, S., and S. Torabian. 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety 137:64–70. doi:10.1016/j.ecoenv.2016.11.029.
  • Farooq, M. A. 2019. The potential of breeding Gossypium hirsutum L. for salinity tolerance. Faisalabad: University of Agriculture.
  • Farooq, M. A., A. Shakeel, R. M. Atif, and M. F. Saleem. 2019. GENOTYPIC VARIATIONS IN SALINITY TOLERANCE AMONG BT COTTON. Pakistan Journal of Botany 51 (6):1945–53. doi:10.30848/PJB2019-6(9).
  • Farooq, M. A., A. Shakeel, R. M. Atif, and M. F. Saleem. 2018. Genetic Variability Studies for Salinity Tolerance in Gossypium hirsutum. International Journal of Agriculture and Biology 20 (12):2871–78.
  • Fuxin, X. D. W. H. W., and F. Fuquan. 2000. Effects of cotton seeds germination and seedling growth under salt stress. SEED 3:002.
  • Golldack, D., C. Li, H. Mohan, and N. Probst. 2014. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science 5:151. doi:10.3389/fpls.2014.00151.
  • Gomez, K. A., and A. A. Gomez. 1984. Statistical procedures for agricultural research. John Wiley & Sons.NY, USA.
  • Gupta, B., and B. Huang. 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics.vol. 2014.
  • Hasegawa, P. M., R. A. Bressan, J.-K. Zhu, and H. J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology 51 (1):463–99. doi:10.1146/annurev.arplant.51.1.463.
  • He, D.-H., Z.-X. Lin, X.-L. Zhang, Y.-C. Nie, X.-P. Guo, C.-D. Feng, and J. McD Stewart. 2005. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica 144 (1–2):141–49. doi:10.1007/s10681-005-5297-6.
  • Hernandez, J. A., A. Jimenez, P. Mullineaux, and F. Sevilia. 2000. Tolerance of pea (Pisum sativum L.) to long‐term salt stress is associated with induction of antioxidant defences. Plant, Cell & Environment 23 (8):853–62. doi:10.1046/j.1365-3040.2000.00602.x.
  • Higbie, S. M., F. Wang, J. McD Stewart, T. M. Sterling, W. C. Lindemann, E. Hughs, and J. Zhang. 2010. Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. International Journal of Agronomy.vol. 2010.
  • Johnson, H. W., H. F. Robinson, and R. E. Comstock. 1955. Estimates of genetic and environmental variability in soybeans 1. Agronomy Journal 47 (7):314–18. doi:10.2134/agronj1955.00021962004700070009x.
  • Kempthorne, O. 1957. An introduction to genetic statistics. New York: John Wiley And Sons, Inc.
  • Khan, N. U., K. B. Marwat, G. Hassan, S. Batool Farhatullah, K. Makhdoom, W. Ahmad, and H. A. B. I. B. U. L. L. A. H. Khan. 2010. Genetic variation and heritability for cotton seed, fiber and oil traits in Gossypium hirsutum L. Pakistan Journal of Botany 42 (1):615–25.
  • Liu, H., D. Weisman, Y. Yuan-bei, B. Cui, Y.-H. Huang, A. Colón-Carmona, and Z.-H. Wang. 2009. An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Science 176 (3):375–82. doi:10.1016/j.plantsci.2008.12.002.
  • Lush, J. L. 1940. Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. Proceedings of the American Society of Animal Nutrition 1940 (1):293–301.
  • Ma, L., H. Zhang, L. Sun, Y. Jiao, G. Zhang, C. Miao, and F. Hao. 2011. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany 63 (1):305–17. doi:10.1093/jxb/err280.
  • Miller, G., N. Suzuki, S. Ciftci‐Yilmaz, and R. Mittler. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33 (4):453–67.
  • Modarresi, M., G. A. Nematzadeh, and F. Moradian. 2013. Salinity response pattern and isolation of catalase gene from halophyte plant Aeluropus littoralis. Photosynthetica 51 (4):621–29. doi:10.1007/s11099-013-0060-z.
  • Oueslati, S., N. Karray-Bouraoui, H. Attia, M. Rabhi, R. Ksouri, and M. Lachaal. 2010. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiologiae Plantarum 32 (2):289–96. doi:10.1007/s11738-009-0406-0.
  • Poschenrieder, C., C. Cabot, S. Martos, B. Gallego, and B. Juan. 2013. Do toxic ions induce hormesis in plants? Plant Science 212:15–25. doi:10.1016/j.plantsci.2013.07.012.
  • Rasool, S., A. Ahmad, T. O. Siddiqi, and P. Ahmad. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum 35 (4):1039–50. doi:10.1007/s11738-012-1142-4.
  • Ray, P. D., B.-W. Huang, and Y. Tsuji. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling 24 (5):981–90. doi:10.1016/j.cellsig.2012.01.008.
  • Sable, A., K. M. Rai, A. Choudhary, V. K. Yadav, S. K. Agarwal, and S. V. Sawant. 2018. Inhibition of heat shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Scientific Reports 8 (1):1–17.
  • Sekmen, A. H., R. Ozgur, B. Uzilday, and I. Turkan. 2014. Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany 99:141–49.
  • Serrano, R., and A. Rodriguez-Navarro. 2001. Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology 13 (4):399–404. doi:10.1016/S0955-0674(00)00227-1.
  • Shahbaz, M., M. Ashraf, N. A. Akram, A. Hanif, S. Hameed, S. Joham, and R. Rehman. 2011. Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiologiae Plantarum 33 (4):1113–22. doi:10.1007/s11738-010-0639-y.
  • Shelke, D. B., M. Pandey, G. C. Nikalje, B. N. Zaware, P. Suprasanna, and T. D. Nikam. 2017. Salt responsive physiological, photosynthetic and biochemical attributes at early seedling stage for screening soybean genotypes. Plant Physiology and Biochemistry 118:519–28. doi:10.1016/j.plaphy.2017.07.013.
  • Steel, R. G. D., J. H. Torrie, and D. A. Dickey. 1997. Principles and procedures of statistics: A biological approach. McGraw-Hill. NY. USA.
  • Tavakkoli, E., P. Rengasamy, and G. K. McDonald. 2010. High concentrations of Na+ and Cl–ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany 61 (15):4449–59. doi:10.1093/jxb/erq251.
  • Wang, M., Q. Zheng, Q. Shen, and S. Guo. 2013. The critical role of potassium in plant stress response. International Journal of Molecular Sciences 14 (4):7370–90. doi:10.3390/ijms14047370.
  • Wu, Z., Y. Peng, L. Guo, and L. Chun. 2014. Root colonization of encapsulated Klebsiella oxytoca Rs-5 on cotton plants and its promoting growth performance under salinity stress. European Journal of Soil Biology 60:81–87. doi:10.1016/j.ejsobi.2013.11.008.
  • Yadav, S., M. Irfan, A. Ahmad, and S. Hayat. 2011. Causes of salinity and plant manifestations to salt stress: A review. Journal of Environmental Biology 32 (5):667.
  • Zhang, L., M. Huijuan, T. Chen, J. Pen, Y. Shuxun, and X. Zhao. 2014. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One 9 (11):e112807. doi:10.1371/journal.pone.0112807.
  • Zhang, T., N. Qian, X. Zhu, H. Chen, S. Wang, H. Mei, and Y. Zhang. 2013. Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLoS One 8 (2):e57220. doi:10.1371/journal.pone.0057220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.