203
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Manufacturing and Characterization of New Composite Based on Epoxy Resin and Lygeum Spartum L. Plant

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdelaziz, S., S. Guessasma, A. Bouaziz, R. Hamzaoui, J. Beaugrand, and A. A. Souid. 2016. Date palm spikelet in mortar: Testing and modelling to reveal the mechanical performance. Construction and Building Materials 124:228–36. doi:10.1016/j.conbuildmat.2016.07.039
  • Amiralian, N. and D. J. Martin. 2017. Nanocomposite Elastomers. US Patent 2017/0333602 A1, filed december 8, 2014, and issued november 5, 2017
  • Arenas, J. P., R. Del Rey, J. Alba, and R. Oltra. 2020. Sound-absorption properties of materials made of esparto grass fibers. Sustainability 2020 (12):5533. doi:10.3390/su12145533.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024
  • Coroller, G., A. Lefeuvre, A. Le Duigou, A. Bourmaud, G. Ausias, T. Gaudry, and C. Baley. 2013. Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite. Composites. Part A, Applied Science and Manufacturing 51:62–70. doi:10.1016/j.compositesa.2013.03.018.
  • Dandekar, C. R., and Y. C. Shin. 2012. Modeling of machining of composite materials: A review. International Journal of Machine Tools & Manufacture 57:102–21. doi:10.1016/j.ijmachtools.2012.01.006
  • De Andrade Silva, F., N. Chawla, and R. D. de Toledo Filho. 2008. Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology 68:3438–43. doi:10.1016/j.compscitech.2008.10.001.
  • Dharmalingam, S., O. Meenakshisundaram, V. Elumalai, and R. S. Boopathy. 2020. An investigation on the interfacial adhesion between amine functionalized luffa fiber and epoxy resin and its effect on thermal and mechanical properties of their composites. Journal of Natural Fibers. doi:10.1080/15440478.2020.1726238.
  • Fiore, V., G. Di Bella, and A. Valenza. 2015. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering 68:14–21. doi:10.1016/j.compositesb.2014.08.025.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers 106:77–83. doi:10.1016/j.carbpol.2014.02.016.
  • González, M. G., J. Baselga, and J. C. Cabanelas. 2012. Applications of FTIR on epoxy resins-identification, monitoring the curing process, phase separation and water uptake. Infrared Spectroscopy - Materials Science, Engineering and Technology, InTech 13: 261–84.
  • Haameem, M. J. A., M. S. Abdul Majid, M. Afendi, H. F. A. Marzuki, I. Fahmi, and A. Gibson. 2016. Mechanical properties of Napier grass fibre/polyester composites. Composite Structures 136:1–10. doi:10.1016/j.compstruct.2015.09.051.
  • Hossain, M. R., M. A. Islam, A. Van Vuurea, and I. Verpoest. 2013. Tensile behavior of environment friendly jute epoxy laminated composite. Procedia Engineering 56:782–88. doi:10.1016/j.proeng.2013.03.196.
  • Hoyos, C. G., and A. Vázquez. 2012. Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline medium for construction application. Composites Part B: Engineering 43 (8):3120–30. doi:10.1016/j.compositesb.2012.04.027.
  • Indran, S., and R. E. Raj. 2015. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydrate Polymers 117:392–99. doi:10.1016/j.carbpol.2014.09.072.
  • Indran, S., R. E. Raj, B. Daniel, and S. Saravanakumar. 2015. Cellulose powder treatment on Cissus quadrangularis stem fiber-reinforcement in unsaturated polyester matrix composites. Journal of Reinforced Plastics and Composites 35 (3):212–27. doi:10.1177/0731684415611756.
  • Joseph, S. 2002. A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Composites Science and Technology 62 (14):1857–68. doi:10.1016/S0266-3538(02)00098-2.
  • Le, T. M., and K. L. Pickering. 2015. The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Composites. Part A, Applied Science and Manufacturing 76:44–53. doi:10.1016/j.compositesa.2015.05.005.
  • Liu, Y., X. Lv, J. Bao, J. Xie, X. Tang, J. Che, Y. Ma, and J. Tong. 2019. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydrate Polymers 218:179–87. doi:10.1016/j.carbpol.2019.04.088.
  • Mahjoub, R., J. M. Yatim, A. R. M. Sam, and M. Raftari. 2014. Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites. Materials & Design 64:640–49. doi:10.1016/j.matdes.2014.08.010.
  • Martin, N., P. Davies, and C. Baley. 2014. Comparison of the properties of scutched flax and flax tow for composite material reinforcement. Industrial Crops and Products 61:284–92. doi:10.1016/j.indcrop.2014.07.015.
  • Mohammadinejad, R., H. Maleki, E. Larrañeta, A. R. Fajardo, A. B. Nik, A. Shavandi, A. Sheikhi, M. Ghorbanpour, M. Farokhi, and P. Govindh. 2019. Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today 16:213–46. doi:10.1016/j.apmt.2019.04.010.
  • Mylsamy, K., and I. Rajendran. 2011. The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Materials & Design 32 (5):3076–84. doi:10.1016/j.matdes.2010.12.051.
  • Nascimento, D. C. O., A. S. Ferreira, S. N. Monteiro, R. C. M. Aquino, and S. G. Kestur. 2012. Studies on the characterization of piassava fibers and their epoxy composites. Composites. Part A, Applied Science and Manufacturing 43 (3):353–62. doi:10.1016/j.compositesa.2011.12.004.
  • Newman, R. H., M. J. Le Guen, M. A. Battley, and J. E. Carpenter. 2010. Failure mechanisms in composites reinforced with unidirectional phormium leaf fibre. Composites. Part A, Applied Science and Manufacturing 41 (3):353–59. doi:10.1016/j.compositesa.2009.11.001.
  • Oksman, K., L. Wallström, and L. Berglund. 2002. Morphology and mechanical properties of unidirectional sisal–epoxy composites. Journal of Applied Polymer Science 84 (13):2358–65. doi:10.1002/app.10475.
  • Osorio, L., E. Trujillo, A. Van Vuure, and I. Verpoest. 2011. Morphological aspects and mechanical properties of single bamboo fibres and flexural characterization of bamboo/epoxy composites. Journal of Reinforced Plastics and Composites 30 (5):396–408. doi:10.1177/0731684410397683.
  • Padmavathi, T., S. V. Naidu, and R. Rao. 2012. Studies on mechanical behavior of surface modified sisal fiber-epoxy composites. Journal of Reinforced Plastics and Composites 31 (8):519–32. doi:10.1177/0731684412438954.
  • Porras, A., A. Maranon, and I. Ashcroft. 2015. Characterization of a novel natural cellulose fabric from manicaria saccifera palm as possible reinforcement of composite materials. Composites Part B: Engineering 74:66–73. doi:10.1016/j.compositesb.2014.12.033.
  • Porras, A., A. Maranon, and I. Ashcroft. 2016. Thermo-mechanical characterization of manicaria saccifera natural fabric reinforced poly-lactic acid composite lamina. Composites. Part A, Applied Science and Manufacturing 81:105–10. doi:10.1016/j.compositesa.2015.11.008.
  • Rokbi, M., A. Imad, C. Herbelot, and Z. Belouadah. 2018. Fracture toughness of random short natural fibers polyester composites. Diffusion Foundations 18: 94–105. d oi:10. 4028/ www.scientific.net /DF. 18.94
  • Sahu, J. 2013. STUDY OF TENSILE AND FLEXURAL PROPERTIES OF LUFFA FIBER REINFORCED EPOXY COMPOSITES. B.Tech. Thesis. National Institute of Technology Rourkela, Deemed University, India.
  • Salem, S., S. Nasri, S. Abidi, A. Smaoui, N. Nasri, P. Mutjé, and K. B. Hamed. 2020. Lignocellulosic biomass from sabkha native vegetation: A new potential source for fiber-based bioenergy and bio-materials. Sabkha Ecosystems: Springer 49: 407–12. doi:10.1007/978-3-030-04417-6_25
  • Salit, M. S. 2014. Tropical natural fibre composites: Properties, Manufacture and Applications. Singapore: Springer. doi:10.1007/978-981-287-155-8
  • Sapuan, S., D. Bachtiar, and M. Hamdan. 2010. Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. International Journal of Automotive and Mechanical Engineering (IJAME) 1:79–90. doi:10.15282/ijame.1.2010.7.0007.
  • Sarasini, F., and V. Fiore. 2018. A systematic literature review on less common natural fibres and their biocomposites. Journal of Cleaner Production 195:240–67. doi:10.1016/j.jclepro.2018.05.197.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from prosopis juliflora bark. Carbohydrate Polymers 92 (2):1928–33. doi:10.1016/j.carbpol.2012.11.064.
  • Sathishkumar, T., P. Navaneethakrishnan, and S. Shankar. 2012. Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites. Composites Science and Technology 72 (10):1183–90. doi:10.1016/j.compscitech.2012.04.001.
  • Sathishkumar, T., P. Navaneethakrishnan, S. Shankar, and R. Rajasekar. 2013. Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites. Composite Interfaces 20 (8):575–93. doi:10.1080/15685543.2013.816652.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 (7):671–75. doi:10.1038/nmeth.2089.
  • Sreekumar, P., R. Saiah, J. M. Saiter, N. Leblanc, K. Joseph, G. Unnikrishnan, and S. Thomas. 2008. Effect of chemical treatment on dynamic mechanical properties of sisal fiber-reinforced polyester composites fabricated by resin transfer molding. Composite Interfaces 15 (2–3):263–79. doi:10.1163/156855408783810858.
  • Sreenivasan, V., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres–An exploratory investigation. Materials & Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Ullah, S., and X. Chen. 2020. Fabrication, applications and challenges of natural biomaterials in tissue engineering. Applied Materials Today 20:100656. doi:10.1016/j.apmt.2020.100656.
  • Vaikhanski, L., and S. R. Nutt. 2003. Fiber-reinforced composite foam from expandable PVC microspheres. Composites. Part A, Applied Science and Manufacturing 34 (12):1245–53. doi:10.1016/S1359-835X(03)00255-0.
  • Westman, M. P., L. S. Fifield, K. L. Simmons, S. Laddha, and T. A. Kafentzis. 2010. Natural fiber composites: A review. Pacific Northwest National Laboratory, US Department of Energy. doi:10.2172/989448
  • Yousif, B., A. Shalwan, C. Chin, and K. Ming. 2012. Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design 40:378–85. doi:10.1016/j.matdes.2012.04.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.