152
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Analysis of Short Jute Fiber-Polypropylene Composite Using Experimental and XFEM Approach

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • ABAQUS. 2014. Abaqus 6.14. In Abaqus 6.14 analysis user’s guide. Vol. 14. Dassault Systemes Simulia Corp, Providence, RI, USA.
  • Akampumuza, O., P. M. Wambua, A. Ahmed, L. Wei, and X.-H. Qin. 2017. Review of the applications of biocomposites in the automotive industry. Polymer Composites 38 (11):2553–69. doi:10.1002/pc.23847.
  • Akhshik, M., S. Panthapulakkal, J. Tjong, and M. Sain. 2019. the effect of lightweighting on greenhouse gas emissions and life cycle energy for automotive composite parts. Clean Technologies and Environmental Policy 21 (3):625–36. doi:10.1007/s10098-018-01662-0.
  • Alves, C., A. J. Silva, L. G. Reis, M. Freitas, L. B. Rodrigues, and D. E. Alves. 2010. Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production 18 (4):313–27. doi:10.1016/j.jclepro.2009.10.022.
  • Armando, D. C., I. Babuška, and J. Tinsley Oden. 2000. Generalized finite element methods for three-dimensional structural mechanics problems. Computers & Structures 77 (2):215–32. doi:10.1016/S0045-7949(99)00211-4.
  • Babuška, I., and J. M. Melenk. 1997. The partition of unity method. International Journal for Numerical Methods in Engineering 40 (4):727–58. doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N.
  • Bajwa, D. S., and S. Bhattacharjee. 2016. Current progress, trends and challenges in the application of biofiber composites by automotive industry. Journal of Natural Fibers 13 (6):660–69.
  • Barenblatt, G. I. 1962. The mathematical theory of equilibrium cracks in brittle fracture. Advances in applied mechanics, 7(1): 55–129.
  • Belytschko, T., R. Gracie, and G. Ventura. 2009. A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Engineering 17 (4):43001. doi:10.1088/0965-0393/17/4/043001.
  • Belytschko, T., and T. Black. 1999. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45 (5):601–20. doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
  • Bensaada, R., M. Almansba, R. Ferhoum, and Z. Sidhoum. 2018. Ductile fracture study of stainless steel aisi 304l thin sheets using the ewf method and cohesive zone modeling. Journal of Failure Analysis and Prevention 18 (5):1181–90. doi:10.1007/s11668-018-0507-4.
  • Bergan, A., C. Dávila, F. Leone, J. Awerbuch, and T. M. Tan. 2016. A mode i cohesive law characterization procedure for through-the-thickness crack propagation in composite laminates. Composites Part B: Engineering 94:338–49. doi:10.1016/j.compositesb.2016.03.071.
  • Bieniaś, J., K. Dadej, and B. Surowska. 2017. Interlaminar fracture toughness of glass and carbon reinforced multidirectional fiber metal laminates. Engineering Fracture Mechanics 175:127–45. doi:10.1016/j.engfracmech.2017.02.007.
  • Biner, S. B., and S. Y. Hu. 2009. Simulation of damage evolution in composites: a phase-field model. Acta Materialia 57 (7):2088–97. doi:10.1016/j.actamat.2009.01.012.
  • Böhm, H. J., A. Eckschlager, and W. Han. 2002. Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Computational Materials Science 25 (1–2):42–53. doi:10.1016/S0927-0256(02)00248-3.
  • Canal, L. P., M. Alfano, and J. Botsis. 2017. A multi-scale based cohesive zone model for the analysis of thickness scaling effect in fiber bridging. Composites Science and Technology 139:90–98. doi:10.1016/j.compscitech.2016.11.027.
  • Cestari, S. P., D. de França da Silva Freitas, D. C. Rodrigues, and L. C. Mendes. 2019. Recycling processes and issues in natural fiber-reinforced polymer composites. In Georgios K., and  A. Silva (eds), Green composites for automotive applications, 285–99. Woodhead Publishing. doi:10.1016/B978-0-08-102177-4.00012-4.
  • Corbière-Nicollier, T., B. Gfeller Laban, L. Lundquist, Y. Leterrier, J.-A. E. Månson, and O. Jolliet. 2001. Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resources, Conservation and Recycling 33 (4):267–87. doi:10.1016/S0921-3449(01)00089-1.
  • Crouch, R. D., S. B. Clay, and C. Oskay. 2013. Experimental and computational investigation of progressive damage accumulation in CFRP composites. Composites Part B: Engineering 48:59–67. doi:10.1016/j.compositesb.2012.12.005.
  • Dixit, S., and V. Chaudhari. 2020. Evaluation of fracture parameters to simulate fracture process zone for SA 516 pressure vessel steel. Materials Today: Proceedings, 28:721-724. doi:10.1016/j.matpr.2019.12.286
  • Dugdale, D. S. 1960. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 8 (2):100–04. doi:10.1016/0022-5096(60)90013-2.
  • Fang, G., X. Gao, and Y. Song. 2019. XFEM analysis of crack propagation in fiber-reinforced ceramic matrix composites with different interphase thicknesses. Composite Interfaces :1–14. doi:10.1080/09276440.2019.1637195.
  • Furtado, S. C. R., A. L. Araújo, A. Silva, C. Alves, and A. M. R. Ribeiro. 2014. Natural fibre-reinforced composite parts for automotive applications. International Journal of Automotive Composites 1 (1):18–38. doi:10.1504/IJAUTOC.2014.064112.
  • Hashimoto, M., T. Okabe, T. Sasayama, H. Matsutani, and M. Nishikawa. 2012. Prediction of tensile strength of discontinuous carbon fiber/polypropylene composite with fiber orientation distribution. Composites. Part A, Applied Science and Manufacturing 43 (10):1791–99. doi:10.1016/j.compositesa.2012.05.006.
  • Hassan, M. S., S. Salawdeh, and J. Goggins. 2018. Advanced finite element simulation of ductile structural steel incorporating a crack growth model. Structures 15:94–114. doi:10.1016/j.istruc.2018.06.002.
  • Henshaw, J. M., W. Han, and A. D. Owens. 1996. An overview of recycling issues for composite materials. Journal of Thermoplastic Composite Materials 9 (1):4–20. doi:10.1177/089270579600900102.
  • Hillerborg, A., M. Modéer, and P. E. Petersson. 1976. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6 (6):773–81. doi:10.1016/0008-8846(76)90007-7.
  • Hine, P. J., H. R. Lusti, and A. A. Gusev. 2002. Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Composites Science and Technology 62 (10–11):1445–53. doi:10.1016/S0266-3538(02)00089-1.
  • Holbery, J., and D. Houston. 2006. Natural-fiber-reinforced polymer composites in automotive applications. JOM 58 (11):80–86. doi:10.1007/s11837-006-0234-2.
  • International, A. S. T. M. 2014. Standard test method for tensile properties of plastics. Philadelphia: ASTM International.
  • Issa, S., S. Eliasson, A. Lundberg, M. Wallin, and H. Hallberg. 2018. Cohesive zone modeling of crack propagation influenced by martensitic phase transformation. Materials Science and Engineering: A 712:564–73. doi:10.1016/j.msea.2017.12.009.
  • Joshi, S. V., L. T. Drzal, A. K. Mohanty, and S. Arora. 2004. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites. Part A, Applied Science and Manufacturing 35 (3):371–76. doi:10.1016/j.compositesa.2003.09.016.
  • Kari, S., H. Berger, and U. Gabbert. 2007. Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Computational Materials Science 39 (1):198–204. doi:10.1016/j.commatsci.2006.02.024.
  • Kumar, S. I., V. Singh, and B. K. Mishra. 2014. XFEM simulation of stable crack growth using j-r curve under finite strain plasticity. International Journal of Mechanics and Materials in Design 10 (2):165–77. doi:10.1007/s10999-014-9238-1.
  • Lei, H. F., Z. Q. Zhang, and B. Liu. 2012. Effect of fiber arrangement on mechanical properties of short fiber reinforced composites. Composites Science and Technology 72 (4):506–14. doi:10.1016/j.compscitech.2011.12.011.
  • Leon, M., Jr, and B. Povl. 2008. Three-dimensional numerical modelling of damage initiation in unidirectional fiber-reinforced composites with ductile matrix. Materials Science and Engineering: A 498 (1–2):81–86. doi:10.1016/j.msea.2007.09.105.
  • Li, W., and T. Siegmund. 2002. An analysis of crack growth in thin-sheet metal via a cohesive zone model. Engineering Fracture Mechanics 69 (18):2073–93. doi:10.1016/S0013-7944(02)00013-9.
  • Lin, G., X.-G. Meng, A. Cornec, and K.-H. Schwalbe. 1999. The effect of strength mis-match on mechanical performance of weld joints. International Journal of Fracture 96 (1):37–54. doi:10.1023/A:1018692718678.
  • Lusti, H. R., P. J. Hine, and A. A. Gusev. 2002. Direct numerical predictions for the elastic and thermoelastic properties of short fibre composites. Composites Science and Technology 62 (15):1927–34. doi:10.1016/S0266-3538(02)00106-9.
  • Needleman, A. 1987. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, Transactions ASME 54 (3):525–31. doi:10.1115/1.3173064.
  • Needleman, A. 1990. An analysis of decohesion along an imperfect interface. In Knauss W.G., Rosakis A.J. (eds), Non-Linear fracture, 21–40. Springer, Dordrecht. doi:10.1007/978-94-017-2444-9_2.
  • Nikfam, M. R., M. Zeinoddini, F. Aghebati, and A. A. Arghaei. 2019. Experimental and XFEM modelling of high cycle fatigue crack growth in steel welded t-joints. International Journal of Mechanical Sciences 153:178–93. doi:10.1016/j.ijmecsci.2019.01.040.
  • Oliver-Borrachero, B., S. Sanchez-Caballero, O. Fenollar, and M. A. Sellés. 2019. Natural-fiber-reinforced polymer composites for automotive parts manufacturing. Key Engineering Materials 793:9–16. d o i:1 0.4 028/w w w.s cientific.net/KEM.793.9.
  • Pan, Y., L. Iorga, and A. A. Pelegri. 2008. Analysis of 3D random chopped fiber reinforced composites using FEM and random sequential adsorption. Computational Materials Science 43 (3):450–61. doi:10.1016/j.commatsci.2007.12.016.
  • Peças, P., I. Ribeiro, H. Carvalho, A. Silva, H. M. Salman, and E. Henriques. 2019. Ramie and jute as natural fibers in a composite Part—a life cycle engineering comparison with an aluminum part. In Georgios K., and  A. Silva (eds),   Green composites for automotive applications, 253–84. Woodhead Publishing. doi:10.1016/B978-0-08-102177-4.00011-2
  • Pike, M. G., and C. Oskay. 2015. XFEM modeling of short microfiber reinforced composites with cohesive interfaces. Finite Elements in Analysis and Design 106:16–31. doi:10.1016/j.finel.2015.07.007.
  • Ridha, M., V. B. C. Tan, and T. E. Tay. 2011. Traction–separation laws for progressive failure of bonded scarf repair of composite panel. Composite Structures 93 (4):1239–45. doi:10.1016/j.compstruct.2010.10.015.
  • Saghafi, H., S. R. Ghaffarian, D. Salimi-Majd, and H. A. Saghafi. 2017. Investigation of interleaf sequence effects on impact delamination of nano-modified woven composite laminates using cohesive zone model. Composite Structures 166:49–56. doi:10.1016/j.compstruct.2017.01.035.
  • Scheider, I. 2009. Micromechanical based derivation of traction-separation laws for cohesive model simulations. Procedia Engineering 1 (1):17–21. doi:10.1016/j.proeng.2009.06.006.
  • Scheider, I., and W. Brocks. 2003. The effect of the traction separation law on the results of cohesive zone crack propagation analyses. Key Engineering Materials 251–252:313–18. d o i :1 0.4028/w w w.s cientific.net/KEM.251-252.313.
  • Shet, C., and N. Chandra. 2002. Analysis of energy balance when using cohesive zone models to simulate fracture processes. Journal of Engineering Materials and Technology 124 (4):440. doi:10.1115/1.1494093.
  • Sideridis, E., J. Venetis, and V. Kytopoulos. 2018. The stiffness of short and randomly distributed fiber composites. WSEAS Transactions on Applied and Theoretical Mechanics 13 (March):53–75.
  • Siegmund, T., and A. Needleman. 1997. A numerical study of dynamic crack growth in elastic-viscoplastic solids. International Journal of Solids and Structures 34 (7):769–87. doi:10.1016/S0020-7683(96)00062-5.
  • Tandon, G. P., and G. J. Weng. 1984. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polymer Composites 5 (4):327–33. doi:10.1002/pc.750050413.
  • Tu, H. Y., S. Schmauder, and U. Weber. 2016. Simulation of the fracture behavior of a s355 electron beam welded joint by cohesive zone modeling. Engineering Fracture Mechanics 163:303–12. doi:10.1016/j.engfracmech.2016.06.008.
  • Wu, Y., C. Xia, L. Cai, A. C. Garcia, and S. Q. Shi. 2018. Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production 184:92–100. doi:10.1016/j.jclepro.2018.02.257.
  • Xu, X. P., and A. Needleman. 1993. Void nucleation by inclusion debonding in a crystal matrix. Modelling and Simulation in Materials Science and Engineering 1 (2):111–32. doi:10.1088/0965-0393/1/2/001.
  • Xu, X. P., and A. Needleman. 1994. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 42 (9):1397–434. doi:10.1016/0022-5096(94)90003-5.
  • Yang, S., F. Zhong, M. Wang, S. Bai, and Q. Wang. 2018. Recycling of automotive shredder residue by solid state shear milling technology. Journal of Industrial and Engineering Chemistry 57:143–53. doi:10.1016/j.jiec.2017.08.016.
  • Zhao, G. H., J. Li, Y. X. Zhang, Z. Liang, and C. H. Yang. 2018. An inverse analysis-based optimal selection of cohesive zone model for metallic materials. International Journal of Applied Mechanics 10 (2):1850015. doi:10.1142/S1758825118500151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.