200
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Potential of Pineapple Leaf Fibers and Their Modifications for Development of Tile Composites

&

References

  • Aji, I. S., E. S. Zainudin, A. Khalina, S. M. Sapuan, and M. D. Khairul. 2012. Thermal property determination of hybridized Kenaf/PALF reinforced HDPE composite by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry 109 (2):893–900. doi:10.1007/s10973-011-1807-z.
  • Asim, M., K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, and M. Enamul Hoque. 2015. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science 2015:1–17. doi:10.1155/2015/950567.
  • Asim, M., M. Jawaid, K. Abdan, and M. Nasir. 2018. Effect of alkali treatments on physical and mechanical strength of pineapple leaf fibres. IOP Conference Series: Materials Science and Engineering 290 (1):012030. doi:10.1088/1757-899X/290/1/012030.
  • Asim, M., M. Jawaid, K. Abdan, and M. R. Ishak. 2016. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering 13 (3):426–35. doi:10.1016/S1672-6529(16)60315-3.
  • Asim, M., M. T. Paridah, M. Chandrasekar, R. M. Shahroze, M. Jawaid, M. Nasir, and R. Siakeng. 2020. Thermal stability of natural fibers and their polymer composites. Iranian Polymer Journal (English Edition) 29 (7):625–48. doi:10.1007/s13726-020-00824-6.
  • Binoj, J. S., R. Edwin Raj, V. S. Sreenivasan, and G. Rexin Thusnavis. 2016. Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian Areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. Journal of Bionic Engineering 13 (1):156–65. doi:10.1016/S1672-6529(14)60170-0.
  • Chakravarty, A. C. 1961. Measurement of density of fibers of jute by density gradient column. Polymer Science 54 (160):S52–56. doi:10.1002/pol.1961.1205416040.
  • Conzatti, L., E. Brunengo, R. Utzeri, M. Castellano, P. Hodge, and P. Stagnaro. 2018. Macrocyclic oligomers as compatibilizing agent for hemp fibres/biodegradable polyester eco-composites. Polymer 146:396–406. doi:10.1016/j.polymer.2018.05.053.
  • Danladi, A., and J. Shu. 2014. Fabrication and properties of pineapple fibre/high density polyethylene composites. American Journal of Materials Science 4 (3):139–43. doi:10.5923/j.materials.20140403.04.
  • Devi, L. U., S. S. Bhagawan, and S. Thomas. 1996. Mechanical properties of pineapple leaf fiber-reinforced polyester composites. Journal of Applied Science 64 (9):1739–48. doi:10.1002/(SICI)1097-4628(19970531)64:9<1739::AID-APP10>3.0.CO;2-T.
  • Devnani, G. L., and S. Sinha. 2019. Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated saccharum spontaneum (kans grass) fi ber. Composites Part B 166 (October):436–45. doi:10.1016/j.compositesb.2019.02.042.
  • Elfehri, K., and B. Christian. 2015. Untreated and alkali treated fibers from alfa stem : effect of alkali treatment on structural, morphological and thermal features. Cellulose 1577–89. doi:10.1007/s10570-015-0583-5.
  • Faruk, O., A. K. Bledzki, H.-P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000 – 2010. Progress in Polymer Science 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Gabriel Oliveira Gloria, Maria Carolina Andrade Teles, Anna Carolina Cerqueira Neves, Carlos Mauricio Fontes Vieira, Felipe Perisse Duarte Lopes, Maycon de Almeida Gomes, Frederico Muylaert Margem, Sergio Neves Monteiro. 2017. Bending test in epoxy composites reinforced with continuous and aligned PALF fibers. Journal of Materials Research and Technology 6 (4): 411–16.
  • George, J., K. Joseph, S. S. Bhagawan, and S. Thomas. 1993. Influence of short pineapple fiber on the viscoelastic properties of low-density polyethylene. Materials Letters 18 (3):163–70. doi:10.1016/0167-577X(93)90119-I.
  • George, J., R. Janardhan, J. S. Anand, S. S. Bhagawan, and S. Thomas. 1996. Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37 (24):5421–31. doi:10.1016/S0032-3861(96)00386-2.
  • Hariwongsanupab, N., S. Thanawan, and T. Amornsakchai. 2017. Improving the mechanical properties of short pineapple leaf fi ber reinforced natural rubber by blending with acrylonitrile butadiene rubber. Polymer Testing 57:94–100. doi:10.1016/j.polymertesting.2016.11.019.
  • Jain, J., S. Jain, and S. Sinha. 2018. Characterization and thermal kinetic analysis of pineapple leaf fibers and their reinforcement in epoxy. Journal of Elastomers and Plastics 51 (3):224–43. doi:10.1177/0095244318783024.
  • Jain, J., S. Sinha, and S. Jain. 2019. Compendious characterization of chemically treated natural fiber from pineapple leaves for reinforcement in polymer composites. Journal of Natural Fibers:1–12. doi:10.1080/15440478.2019.1658256.
  • Jawaid, M., Asim, M., Tahir, P.M., Nasir, M. 2020. Pineapple Leaf Fibers: Processing, Properties and Applications. Springer Singapore. doi:10.1007/978-981-15-1416-6
  • Jebadurai, S. G., R. Edwin Raj, V. S. Sreenivasan, and J. S. Binoj. 2019. Comprehensive characterization of natural cellulosic fi ber from coccinia grandis stem. Carbohydrate Polymers 207 (June):675–83. doi:10.1016/j.carbpol.2018.12.027.
  • Johnson, S., L. Kang, and H. Akil. 2016. Mechanical behavior of jute hybrid bio-composites. Composites Part B 91:83–93. doi:10.1016/j.compositesb.2015.12.052.
  • Kim, K.-W., K. B.-H. L. Hyun-joong, K. Sriroth, and J. R. Dorgan. 2012. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. Journal of Thermal Analysis and Calorimetry 108 (3):1131–39. doi:10.1007/s10973-011-1350-y.
  • Koronis, G., A. Silva, and M. Fontul. 2013. Green composites : a review of adequate materials for automotive applications. Composites Part B 44 (1):120–27. doi:10.1016/j.compositesb.2012.07.004.
  • Li, X., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment 15 (1):25–33. doi:10.1007/s10924-006-0042-3.
  • Liu, W., M. Misra, L. T. D. Per Askeland, and A. K. Mohanty. 2005. ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer 46 (8):2710–21. doi:10.1016/j.polymer.2005.01.027.
  • Liu, Y., J. Xie, W. Na, M. Yunhai, C. Menon, and J. Tong. 2019. Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose 26 (8):4707–19. doi:10.1007/s10570-019-02429-6.
  • Lopattananon, N., K. Panawarangkul, K. Sahakaro, and B. Ellis. 2006. Performance of pineapple leaf fiber-natural rubber composites: the effect of fiber surface treatments. Journal of Applied Polymer Science 102 (2):1974–84. doi:10.1002/app.24584.
  • Lopattananon, N., Y. Payae, and M. Seadan. 2008. Influence of fiber modification on interfacial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites. Journal of Applied Polymer Science 110 (1):433–43. doi:10.1002/app.
  • Madhu,P., M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, and B. Yogesha. 2019. A review on synthesis and characterization of commercially available natural fibers : part II a review on synthesis and characterization of commercially. Journal of Natural Fibers 16 (1):25–36. doi:10.1080/15440478.2017.1379045.
  • Madhu, P. M. R., and Sanjay Morreale. 2011. Composites: part A green composites: a brief review. Composites Part A 42 (6):579–88. doi:10.1016/j.compositesa.2011.01.017.
  • Mantia, F. P. L., and M. Morreale. 2011. Composites: part A green composites: a brief review. Composites Part A 42 (6):579–88. doi:10.1016/j.compositesa.2011.01.017.
  • Mittal, V., and S. Sinha. 2014. Effect of chemical treatment on the mechanical and water absorption properties of bagasse fiber-reinforced epoxy composites. Polymer Engineering and Science 35 (6):545–50. doi:10.1515/polyeng-2014-0270.
  • Mittal, V., and S. Sinha. 2015. Effect of chemical treatment on thermal properties of bagasse fiber-reinforced epoxy composite. Science and Engineering of Composite Materials. doi:10.1515/secm-2014-0434.
  • Mukherjee, P. S., and K. G. Satyanarayana. 1986. Structure and properties of some vegetable fibres. II. Pineapple fibre. Journal Of Materials Science 21:51–56. doi:10.1007/BF01144699.
  • Munawar, S. S., K. Umemura, F. Tanaka, and S. Kawai. 2008. Effects of alkali, mild steam, and chitosan treatments on the properties of pineapple, ramie, and sansevieria fiber bundles. Journal of Wood Science 54 (1):28–35. doi:10.1007/s10086-007-0903-y.
  • Mwaikambo, L. Y., and M. P. Ansell. 1999. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Macromolecular Materials and Engineering 272 (4753):108–16.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science 2001 (July):2222–34. doi:10.1002/app.10460.
  • Panyasart, K., N. Chaiyut, T. Amornsakchai, and O. Santawitee. 2014. Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia 56:406–13. doi:10.1016/j.egypro.2014.07.173.
  • Pavithran, C., P. S. Mukherjee, M. Brahmakumar, and A. D. Damodaran. 1987. Impact properties of natural fibre composites. Journal of Materials Science Letters 6:882–84. doi:10.1007/BF01729857.
  • Pickering, K. L., M. G. Aruan Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Prasad, N., V. K. Agarwal, and S. Sinha. 2015. Physico-mechanical properties of coir fiber/LDPE composites : effect of chemical treatment and compatibilizer. Korean Journal of Chemical Engineering 32 (12):2534–41. doi:10.1007/s11814-015-0069-z.
  • Prasad, N., V. K. Agarwal, and S. Sinha. 2016. Banana fiber reinforced low-density polyethylene composites: effect of chemical treatment and compatibilizer addition. Iranian Polymer Journal 25 (3):229–41. doi:10.1007/s13726-016-0416-x.
  • Prukkaewkanjana, K., S. Thanawan, and T. Amornsakchai. 2015. High performance hybrid reinforcement of nitrile rubber using short pineapple leaf fiber and carbon black. Polymer Testing 45:76–82. doi:10.1016/j.polymertesting.2015.05.004.
  • Sahu, V., K. S. Bisen, and M. Krishna. 2015. Mechanical properties of sisal and pineapple fiber hybrid composites reinforced with epoxy resin. International Journal Of Modern Engineering Research (IJMER) 5:32–38.
  • Sarikanat, M., Y. Seki, K. Sever, and C. Durmus. 2014. Determination of properties of althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B: Engineering 57:180–86. doi:10.1016/j.compositesb.2013.09.041.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from coccinia grandis. L. Carbohydrate Polymers 186:332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Shih, Y.-F., R.-H. Huang, and Y. Yi-hsiuan. 2014. Preparation and characterization of sol gel modified pineapple leaf fiber/polylactic acid composites. Journal of Sol-Gel Science & Technology 70 (3):491–99. doi:10.1007/s10971-014-3311-y.
  • Siakeng, R., M. Jawaid, H. Ariffin, and M. S. Salit. 2018. Effects of surface treatments on tensile, thermal and fibre-matrix bond strength of coir and pineapple leaf fibres with poly lactic acid. Journal of Bionic Engineering 15 (6):1035–46. doi:10.1007/s42235-018-0091-z.
  • Siregar, J. P., M. S. Salit, M. Z. A. Rahman, and K. Z. H. M. Dahlan. 2011. Thermogravimetric analysis (TGA) and differential scanning calometric (DSC) analysis of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Pertanika Journal of Science and Technology 19 (1):161–70.
  • Siregar, J. P., S. M. Sapuan, M. Z. A. Rahman, and H. M. D. K. Zaman. 2012. Effects of alkali treatments on the tensile properties of pineapple leaf fibre reinforced high impact polystyrene composites. Pertanika Journal of Science and Technology 20 (2):409–14.
  • Subramanya, R., K. G. Satyanarayana, and B. S. Pilar. 2017. Evaluation of structural, tensile and thermal properties of banana fibers. Journal of Natural Fibers 14 (4):485–97. doi:10.1080/15440478.2016.1212771.
  • Suwanruji, P., T. Tuechart, W. Smitthipong, and R. Chollakup. 2017. Modification of pineapple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic. Journal of Thermoplastic Composite Materials 30 (10):1344–60. doi:10.1177/0892705716632860.
  • Threepopnatkul, P., N. Kaerkitcha, and N. Athipongarporn. 2009. Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites. Composites Part B: Engineering 40 (7):628–32. doi:10.1016/j.compositesb.2009.04.008.
  • Tran, L. Q. N., C. A. Fuentes, C. Dupont-gillain, A. W. Van Vuure, and I. Verpoest. 2013. Understanding the interfacial compatibility and adhesion of natural coir fibre thermoplastic composites. Composites Science and Technology 80:23–30. doi:10.1016/j.compscitech.2013.03.004.
  • Vijay, R., D. Lenin Singaravelu, A. Vinod, M. R. Sanjay, S. Siengchin, and M. Jawaid. 2019. Characterization of raw and alkali treated new natural cellulosic fi bers from tridax procumbens. International Journal of Biological Macromolecules 125:99–108. doi:10.1016/j.ijbiomac.2018.12.056.
  • Wang, G., D. Zhang, G. Wan, L. Bo, and G. Zhao. 2019. Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polymer 181 (July). doi: 10.1016/j.polymer.2019.121803.
  • Wisittanawat, U., S. Thanawan, and T. Amornsakchai. 2014. Mechanical properties of highly aligned short pineapple leaf fiber reinforced - nitrile rubber composite: effect of fiber content and bonding agent. Polymer Testing 35:20–27. doi:10.1016/j.polymertesting.2014.02.003.
  • Yantaboot, K., and T. Amornsakchai. 2017. Effect of mastication time on the low strain properties of short pineapple leaf fiber reinforced natural rubber composites. Polymer Testing 57:31–37. doi:10.1016/j.polymertesting.2016.11.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.