329
Views
3
CrossRef citations to date
0
Altmetric
Review

The Properties of Feather Fiber-Reinforced Polymer Composites: A Review

, , &

References

  • Abdulmajeed, A. A., T. O. Närhi, P. K. Vallittu, and L. V. Lassila. 2011. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite. Dental Materials 27 (4):313–21. doi:10.1016/j.dental.2010.11.007.
  • Agrawal, R., N. S. Saxena, K. B. Sharma, S. Thomas, and M. S. Sreekala. 2000. Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Materials Science and Engineering: A 277 (1–2):77–82. doi:10.1016/S0921-5093(99)00556-0.
  • Ahmad, I., A. Baharum, and I. Abdullah. 2006. Effect of extrusion rate and fiber loading on mechanical properties of Twaron fiber-thermoplastic natural rubber (TPNR) composites. Journal of Reinforced Plastics and Composites 25 (9):957–65. doi:10.1177/0731684406065082.
  • Arai, K. M., R. Takahashi, Y. Yokote, and K. Akahane. 1983. Amino‐acid sequence of feather keratin from fowl. European Journal of Biochemistry 132 (3):501–07. doi:10.1111/j.1432-1033.1983.tb07389.x.
  • Aucher, J. 2009. Etude comparative du comportement composites à matrice thermoplastique ou thermodurcissable. INSA Rouen: PhD diss.
  • Barone, J. R., and W. F. Schmidt. 2005a. Polyethylene reinforced with keratin fibers obtained from chicken feathers. Composites Science and Technology 65 (2):173–81. doi:10.1016/j.compscitech.2004.06.011.
  • Barone, J. R., and W. F. Schmidt. 2006. Effect of formic acid exposure on keratin fiber derived from poultry feather biomass. Bioresource Technology 97 (2):233–42. doi:10.1016/j.biortech.2005.02.039.
  • Barone, J. R., W. F. Schmidt, and C. F. Liebner. 2005b. Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Composites Science and Technology 65 (3–4):683–92. doi:10.1016/j.compscitech.2004.09.030.
  • Bartels, T. 2003. Variations in the morphology, distribution, and arrangement of feathers in domesticated birds. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 298B (1):91–108. doi:10.1002/jez.b.28.
  • Benzerzour, M., N. Sebaibi, N. E. Abriak, and C. Binetruy. 2012. Waste fibre–cement matrix bond characteristics improved by using silane-treated fibres. Construction and Building Materials 37:1–6. doi:10.1016/j.conbuildmat.2012.07.024.
  • Bera, M., R. Alagirusamy, and A. Das. 2010. A study on interfacial properties of jute-PP composites. Journal of Reinforced Plastics and Composites 29 (20):3155–61. doi:10.1177/0731684410369723.
  • Berthelot, J. M. 1999. Matériaux composites: Comportement mécanique et analyse des structures, 365–366. Paris: Élodie Lecoquerre.
  • Bessa, J., . J., J. B. Souza, J. Lopes, J. Sampaio, F., . C. Mota, F. Cunha, and R. Fangueiro. 2017. Characterization of thermal and acoustic insulation of chicken feather reinforced composites. Procedia Engineering 200:472–79. doi:10.1016/j.proeng.2017.07.066.
  • Bisanda, E. T. N., and M. P. Ansell. 1991. The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Composites Science and Technology 41 (2):165–78. doi:10.1016/0266-3538(91)90026-L.
  • Bledzki, A. K. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24 (2):221–74. doi:10.1016/S0079-6700(98)00018-5.
  • Bogoeva-Gaceva, G., M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M. E. Errico. 2007. Natural fiber eco-composites. Polymer Composites 28 (1):98–107. doi:10.1002/pc.20270.
  • Bonser, R., and P. Purslow. 1995. The Young’s modulus of feather keratin. Journal of Experimental Biology 198 (4):1029–33.
  • Cameron, G. J., T. J. Wess, and R. H. C. Bonser. 2003. Young’s modulus varies with differential orientation of keratin in feathers. Journal of Structural Biology 143 (2):118–23. doi:10.1016/S1047-8477(03)00142-4.
  • Casadesús, M., J. Macanás, X. Colom, J. Cañavate, M. D. Álvarez, N. Garrido, F. Molins, and F. Carrillo. 2018. Effect of chemical treatments and additives on properties of chicken feathers thermoplastic biocomposites. Journal of Composite Materials 52 (26):3637–53. doi:10.1177/0021998318766652.
  • Choudary, R. B., N. N. Krishna, and N. R. M. R. Bhargava. 2018. Study on CFF-Polyester Composites. Materials Today: Proceedings 5 (2):8514–22.
  • Choudary, R. B., and R. Nehanth. 2019. Effects of fibre content on mechanical properties of chicken feather fibre/PP composites. Materials Today: Proceedings 18:303–09.
  • FAOSTAT. 2019. Compassion in world farming, 2013. Statistics: Broiler chickens, Last Modified August 27,2019. Accessed september 8, 2019. https://www.ciwf.org.uk/media/5235303/Statistics-Broiler-chickens.pdf
  • Franco-Marquès, E., J. A. Méndez, M. A. Pèlach, F. Vilaseca, J. Bayer, and P. Mutjé. 2011. Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chemical Engineering Journal 166 (3):1170–78. doi:10.1016/j.cej.2010.12.031.
  • George, J., M. S. Sreekala, and S. Thomas. 2001. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering & Science 41 (9):1471–85. doi:10.1002/pen.10846.
  • Ghani, S. A., S. J. Tan, and T. S. Yeng. 2013. Properties of chicken feather fiber-filled low-density polyethylene composites: The effect of polyethylene grafted maleic anhydride. Polymer-plastics Technology and Engineering 52 (5):495–500. doi:10.1080/03602559.2012.762018.
  • Gill, C. O. 1998. Microbiological contamination of meat during slaughter and butchering of cattle, sheep and pigs. The microbiology of meat and poultry, 118–57. London: Blackie Academic and Professional.
  • Goddard, D. R., and L. Michaelis. 1935. Derivatives of keratin. Journal of Biological Chemistry 112 (1):361–71.
  • Gokce, O., M. Kasap, G. Akpinar, and G. Ozkoc. 2017. Preparation, characterization, and in vitro evaluation of chicken feather fiber-thermoplastic polyurethane composites. Journal of Applied Polymer Science 134 (45):45338. doi:10.1002/app.45338.
  • Hallonet, A. 2016. Développement et caractérisation d’un matériau composite à base de fibres de lin: Application au renforcement de structures en béton par collage externe. PhD diss., Université Lyon
  • Harrap, B. T., and E. F. Woods. 1964. Soluble derivatives of feather keratin. 1. Isolation, fractionation and amino acid composition. Biochemical Journal 92 (1):8. doi:10.1042/bj0920008.
  • Holbery, J., and D. Houston. 2006. Natural-fiber-reinforced polymer composites in automotive applications. Jom 58 (11):80–86. doi:10.1007/s11837-006-0234-2.
  • Hong, C. K., and R. P. Wool. 2005. Development of a bio-based composite material from soybean oil and keratin fibers. Journal of Applied Polymer Science 95 (6):1524–38. doi:10.1002/app.21044.
  • Huda, M. S., W. F. Schmidt, M. Misra, and L. T. Drzal. 2013. Effect of fiber surface treatment of poultry feather fibers on the properties of their polymer matrix composites. Journal of Applied Polymer Science 128 (2):1117–24. doi:10.1002/app.38306.
  • Huda, S., and Y. Yang. 2008. Composites from ground chicken quill and polypropylene. Composites Science and Technology 68 (3–4):790–98. doi:10.1016/j.compscitech.2007.08.015.
  • Jagadeeshgouda, K. B. 2014. EXPERIMENTAL STUDY OF BEHAVIOUR OF POULTRY FEATHER FIBER - A REINFORCING MATERIAL FOR COMPOSITES. International Journal of Research in Engineering and Technology 3 (2):362–71. doi:10.15623/ijret.2014.0302065.
  • Jayamani, E., S. K. Heng, L. T. Sean, B. Bakri, and M. Khusairy. 2018. Mechanical Properties of Chicken Feather Reinforced Unsaturated Polyester Composites. In Key Engineering Materials, Vol. 775, 3–6. Trans Tech Publications Ltd.
  • Kar, P., and M. Misra. 2004. Use of keratin fiber for separation of heavy metals from water. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 79 (11):1313–19. doi:10.1002/jctb.1132.
  • Ku, H., H. Wang, N. Pattarachaiyakoop, and M. Trada. 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering 42 (4):856–73. doi:10.1016/j.compositesb.2011.01.010.
  • Kuru, D., A. Akpinar Borazan, and M. Guru. 2018. Effect of chicken feather and boron compounds as filler on mechanical and flame retardancy properties of polymer composite materials. Waste Management & Research: The Journal for a Sustainable Circular Economy 36 (11):1029–36. doi:10.1177/0734242X18804041.
  • Leeson, S., and T. Walsh. 2004. Feathering in commercial poultry I. Feather growth and composition. World’s Poultry Science Journal 60 (1):42–51. doi:10.1079/WPS20033.
  • Leong, Y. W., S. Thitithanasarn, K. Yamada, and H. Hamada. 2014. Compression and injection molding techniques for natural fiber composites. In Natural Fibre Composites, 216–32. Woodhead Publishing.
  • Li, X., L. G. Tabil, S. Panigrahi, and W. J. Crerar. 2006. The influence of fiber content on properties of injection molded flax fiber-HDPE biocomposites. In 2006 ASAE annual meeting, 1. American Society of Agricultural and Biological Engineers.
  • Liu, L., B.-M. Zhang, D.-F. Wang, and Z.-J. Wu. 2006. Effects of cure cycles on void content and mechanical properties of composite laminates. Composite Structures 73 (3):303–09. doi:10.1016/j.compstruct.2005.02.001.
  • Ma, B., X. Qiao, X. Hou, and Y. Yang. 2016. Pure keratin membrane and fibers from chicken feather. International Journal of Biological Macromolecules 89:614–21. doi:10.1016/j.ijbiomac.2016.04.039.
  • Malkapuram, R., V. Kumar, and Y. S. Negi. 2009. Recent development in natural fiber reinforced polypropylene composites. Journal of Reinforced Plastics and Composites 28 (10):1169–89. doi:10.1177/0731684407087759.
  • Martinez-Hernandez, A. L., C. Velasco-Santos, M. De Icaza, and V. M. Castano. 2005. Microstructural characterisation of keratin fibres from chicken feathers. International Journal of Environment and Pollution 23 (2):162–78. doi:10.1504/IJEP.2005.006858.
  • Messinger, N. G. 1965. Methods Used for Identification of Feather Remains from Wetherill Mesa 1. Memoirs of the Society for American Archaeology 19:206–15. doi:10.1017/S0081130000004585.
  • Mishra, S. C., and N. B. Nayak. 2010. An investigation of dielectric properties of chicken feather reinforced epoxy matrix composite. Journal of Reinforced Plastics and Composites 29 (17):2691–97. doi:10.1177/0731684409356610.
  • Morris, S. T. 2009. Economics of sheep production. Small Ruminant Research 86 (1–3):59–62. doi:10.1016/j.smallrumres.2009.09.019.
  • Mrajji, O., M. E. Wazna, Y. Boussoualem, A. E. Bouari, and O. Cherkaoui. 2019. Feather waste as a thermal insulation solution: Treatment, elaboration and characterization. Journal of Industrial Textiles 1528083719869393.
  • Mrajji, O., M. E. Wazna, Z. Samouh, A. E. Bouari, O. Cherkaoui, and R. El Moznine. 2020. The effect of nonwoven structure on thermomechanical properties of feather waste reinforced polyester composite. Journal of Industrial Textiles 1528083720947734.
  • Muthuraj, R., M. Misra, and A. K. Mohanty. 2015. Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers. In: Biocomposites. Woodhead Publishing 93–140.
  • NagarajaGanesh, B., P. Sugumaran, and R. Sridhar. 2012. Mechanical properties of rice straw and chicken feather fibers. International Journal of Composite Materials and Manufacturing 2:22–26.
  • Nair, K. C., S. Thomas, and G. Groeninckx. 2001. Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Composites Science and Technology 61 (16):2519–29. doi:10.1016/S0266-3538(01)00170-1.
  • Nguyen, D. D., M. Vadivel, S. Shobana, S. Arvindnarayan, J. Dharmaraja, R. K. Priya, P. Nguyen-Tri, G. Kumar, and S. W. Chang. 2020. Fabrication and modeling of prototype bike silencer using hybrid glass and chicken feather fiber/hydroxyapatite reinforced epoxy composites. Progress in Organic Coatings 148:105871. doi:10.1016/j.porgcoat.2020.105871.
  • Oladele, I. O., A. M. Okoro, J. A. Omotoyinbo, and M. C. Khoathane. 2018. Evaluation of the mechanical properties of chemically modified chicken feather fibres reinforced high density polyethylene composites. Journal of Taibah University for Science 12 (1):56–63. doi:10.1080/16583655.2018.1451103.
  • Olivier, P. B. A. U. P. S., J. P. Cottu, and B. B. A. U. P. S. Ferret. 1995. Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates. Composites 26 (7):509–15. doi:10.1016/0010-4361(95)96808-J.
  • Ouakarrouch, M., K. El Azhary, N. Laaroussi, M. Garoum, and F. Kifani-Sahban. 2020. Thermal performances and environmental analysis of a new composite building material based on gypsum plaster and chicken feathers waste. Thermal Science and Engineering Progress 19:100642. doi:10.1016/j.tsep.2020.100642.
  • Paris, C. 2011. Étude et modélisation de la polymérisation dynamique de composites à matrice thermodurcissable. université de Toulouse: PhD diss.
  • Poole, A. J., and J. S. Church. 2015. The effects of physical and chemical treatments on Na2S produced feather keratin films. International Journal of Biological Macromolecules 73:99–108. doi:10.1016/j.ijbiomac.2014.11.003.
  • Pothan, L. A., and S. Thomas. 2003. Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester composites. Composites Science and Technology 63 (9):1231–40. doi:10.1016/S0266-3538(03)00092-7.
  • Pourjavaheri, F. 2017. Avian-keratin refinement and application in biomaterials. PhD diss., RMIT University .Melbourne, Australia.
  • Pourjavaheri, F., F. Mohaddes, R. A. Shanks, M. Czajka, and A. Gupta. 2014. Effects of different purification methods on chicken feather keratin. In Advanced Materials Research, Vol. 941, 1184–87. Trans Tech Publications Ltd.
  • Rad, Z. P., H. Tavanai, and A. R. Moradi. 2012. Production of feather keratin nanopowder through electrospraying. Journal of Aerosol Science 51:49–56. doi:10.1016/j.jaerosci.2012.04.007.
  • Radhakrlshnan, T., B. V. Iyer, G. S. Viswanathan, and H. Wakeham. 1959. The Relation Between Crystallite Orientation and Tensile Properties of Mercerized Cotton. Textile Research Journal 29 (4):322–31. doi:10.1177/004051755902900406.
  • Saheb, D. N., and J. P. Jog. 1999. Natural fiber polymer composites: A review. Advances in Polymer Technology. Journal of the Polymer Processing Institute 18 (4):351–63.
  • Saravanan, K., and C. Prakash. 2020. Effect of processing conditions on flexural strength properties of chicken feather fibre (CFF) and its hybrid composites with polypropylene resin. Journal of Natural Fibers 17 (7):933–44. doi:10.1080/15440478.2018.1539941.
  • Schmidt, W. F., and S. Jayasundera. 2004. Microcrystalline avian keratin protein fibers. In Natural fibers, plastics and composites, 51–66. Boston, MA: Springer.
  • Schrooyen, P. M. M. 1999. Feather keratins: Modification and film formation. PhD diss., Proefschrift Universiteit Twente, Enschede.
  • Seki, Y. 2009. Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Materials Science and Engineering: A 508 (1–2):247–52. doi:10.1016/j.msea.2009.01.043.
  • Shah, D. U., D. Porter, and F. Vollrath. 2014. Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Composites Science and Technology 101:173–83. doi:10.1016/j.compscitech.2014.07.015.
  • Sreenivasan, D. P., A. Sujith, and C. Rajesh. 2019. Cure characteristics and mechanical properties of biocomposites of natural rubber reinforced with chicken feather fibre: Effect of fibre loading, alkali treatment, bonding and vulcanizing systems. Materials Today Communications 20:100555. doi:10.1016/j.mtcomm.2019.100555.
  • Subramani, T., S. Krishnan, S. K. Ganesan, and G. Nagarajan. 2014. Investigation of mechanical properties in polyester and phenylester composites reinforced with chicken feather fiber. Int J Eng Res Appl 4 (12):93–104.
  • Sudalaiyandi, G. 2012. Characterizing the cleaning process of chicken feathers. University of Waikato: PhD diss.
  • Taj, S., M. A. Munawar, and S. Khan. 2007. Natural fiber-reinforced polymer composites. Proceedings-Pakistan Academy of Sciences 44 (2):129.
  • Tesfaye, T., B. Sithole, and D. Ramjugernath. 2018a. Valorisation of waste chicken feathers: Optimisation of decontamination and pre-treatment with bleaching agents using response surface methodology. Sustainable Chemistry and Pharmacy 8:21–37. doi:10.1016/j.scp.2018.02.003.
  • Tesfaye, T., B. Sithole, and D. Ramjugernath. 2018b. Valorisation of chicken feather barbs: Utilisation in yarn production and technical textile applications. Sustainable Chemistry and Pharmacy 8:38–49. doi:10.1016/j.scp.2018.02.002.
  • Tesfaye, T., B. Sithole, D. Ramjugernath, and L. Ndlela. 2018b. Optimisation of surfactant decontamination and pre-treatment of waste chicken feathers by using response surface methodology. Waste Management 72:371–88. doi:10.1016/j.wasman.2017.11.013.
  • Tesfaye, T., B. Sithole, D. Ramjugernath, and T. Mokhothu. 2018a. Valorisation of chicken feathers: Characterisation of thermal, mechanical and electrical properties. Sustainable Chemistry and Pharmacy 9:27–34. doi:10.1016/j.scp.2018.05.003.
  • Tesfaye, T., B. Sithole, D. Ramjugernath, and V. Chunilall. 2017a. Valorisation of chicken feathers: Characterisation of physical properties and morphological structure. Journal of Cleaner Production 149:349–65. doi:10.1016/j.jclepro.2017.02.112.
  • Tesfaye, T., B. Sithole, D. Ramjugernath, and V. Chunilall. 2017b. Valorisation of chicken feathers: Characterisation of chemical properties. Waste Management 68:626–35. doi:10.1016/j.wasman.2017.06.050.
  • Thlebault, D. 2002. Feathers. Accessed September 25,2018. www.oiseaux.net/dossiers/ornithopedia/les.plumes.html
  • Tronina, P., ., and F. Bubel. 2008. Production of organic fertilizer from poultry feather wastes excluding the composting process. Polish Journal of Chemical Technology 10 (2):33–36. doi:10.2478/v10026-008-0025-3.
  • Ullah, A., and J. Wu. 2013. Feather Fiber-Based Thermoplastics: Effects of Different Plasticizers on Material Properties. Macromolecular Materials and Engineering 298 (2):153–62. doi:10.1002/mame.201200010.
  • Wambua, P., J. Ivens, and I. Verpoest. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology 63 (9):1259–64. doi:10.1016/S0266-3538(03)00096-4.
  • Winandy, J. E., J. H. Muehl, J. A. Micales, A. Raina, and W. Schmidt. 2003. Potential of chicken feather fibre in wood MDF composites. University of London. EcoComp 2003, Queen Mary 6–20.
  • Yu, T., N. Jiang, and Y. Li. 2014. Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Composites. Part A, Applied Science and Manufacturing 64:139–46. doi:10.1016/j.compositesa.2014.05.008.
  • Zhan, M., R. P. Wool, and J. Q. Xiao. 2011. Electrical properties of chicken feather fiber reinforced epoxy composites. Composites. Part A, Applied Science and Manufacturing 42 (3):229–33. doi:10.1016/j.compositesa.2010.11.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.