271
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Phytoremediation of Soils Contaminated with Cadmium by Agave americana

, , , , &

References

  • Adesodun, J. K., M. O. Atayese, T. A. Agbaje, B. A. Osadiaye, and A. A. Soretire. 2010. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annus) for metals in soils contaminated with zinc and lead nitrates. Water, Air, and Soil Pollution 207:195–201. doi:10.1007/s11270-009-0128-3.
  • Baker, A. J. M., and P. L. Walker. 1990. Ecophysiology of metal uptake by tolerant plants. In Heavy Metal Tolerance in Plants: Evolutionary Aspects, ed. A. J. Shaw, 155–77. Boca Raton: CRC Press.
  • Begonia, G. B., and C. N. Gray. 1998. Growth responses of Indian Mustard [Brassica juncea (L.) Czern.] and its phytoextraction of lead from a contaminated soil. Bulletin of Environmental Contamination and Toxicology 61:38–43. doi:10.1007/s001289900726.
  • Brooks, R. R. 1998. Plants that hyperaccumulate heavy metals. Cambridge: University Press.
  • Cai, Y., and O. Braids. 2002. Biogeochemistry of Environmentally Important Elements. ACS Symposium Series 835, American Chemical Society, Oxford University Press, Washington, DC.
  • Casida, L., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Science 98:371–76. doi:10.1097/00010694-196412000-00004.
  • Chang, A. C. 1992. A methodology for establishing phytotoxicity criteria for chromium, copper, nickel and zinc in agricultural land application of municipal sewage sludges. Journal of Environmental Quality 1:521–36. doi:10.2134/jeq1992.00472425002100040001x.
  • Chugh, L. K., and S. K. Sawhney. 1999. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiology and Biochemistry 37:297–303. doi:10.1016/S0981-9428(99)80028-X.
  • Ci, D., D. Jiang, T. Dai, Q. Jing, and W. Cao. 2009. Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere 77 (11):1620–25. doi:10.1016/j.chemosphere.2009.08.062.
  • Cieslinski, G., and K. C. J. Van Rees. 1996. Cadmium uptake and bioaccumulation in selected cultivars of wheat and flax as affected by soil type. Plant and Soil 118:115–24. doi:10.1007/BF00011000.
  • Dhillon, K. S., and S. K. Dhillon. Phytoremediation of selenium contaminated soils: Strategies and limitations. Global advances in selenium research from theory to application. Proceedings of the 4th International Conference on Se in the environment and human health. Banuels ed. (2016).Taylor and Francis Group, London, ISBN 978-1-138-02731-2.
  • Ghosh, M., and S. P. Singh. 2005. Comparative uptake and phytoextraction study of soil induced chromium by accumulator and high biomass weed species. Applied Ecology and Environmental Research 3 (2):67–79. doi:10.15666/aeer/0302_067079.
  • Gomez, K. A., and A. Gomez.1984. Statistical Procedures for Agricultural Research, 2nd ed., John Wiley & Sons Inc. New York; New Jersey; 680pp.
  • Jackson, M. L. 1973. Soil Chemical Analysis. New Delhi: Prentice Hall of India Private Limited.
  • Kumar, S., and H. R. Dhingra. 2005. Sexual reproduction and cadmium partitioning in two mungbean genotypes raised in soils contaminated with cadmium. Indian Journal of Plant Physiology 10:151–57.
  • Lal, K., and P. S. Minhas. 2008. Extraction of cadmium and tolerance of three annual cut flowers on Cd-contaminated soils. Bioresource Technology 99 (5):1006–11. doi:10.1016/j.biortech.2007.03.005.
  • Leita, L., M. D. Nobili, and M. T. B. Garcia. 1993. Response of Leguminosae to cadmium exposure. Journal of Plant Nutrition 16:200l–2012. doi:10.1080/01904169309364670.
  • Lu, X., M. Kruatrachue, P. Pokethitiyook, and K. Homyok. 2004. Removal of cadmium and zinc by water hyacinth. Eichhornia Crassipes. Science Asia 30:93–103. doi:10.2306/scienceasia1513-1874.2004.30.093.
  • McLaughlin, M. J., M. J. Bell, G. C. Wright, and G. D. Cozens. 2000. Uptake and partitioning of Cd by cultivars of Peanut. Plant and Soil 22:51–58. doi:10.1023/A:1004771712840.
  • Meers, E., M. Hopgood, E. Lesage, P. Vervaeke, F. M. G. Tack, and M. Verloo. 2004. Enhanced Phytoextraction: In Search for EDTA Alternatives. International Journal of Phytoremediation 6 (2):95–109. doi:10.1080/16226510490454777.
  • Mellem, J. J., H. Baijnath, and B. Odhav. 2012. Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research 7:591–96.
  • Newman, M. C., and M. A. Unger. 2003. Fundamentals of Ecotoxicology. Lewis Publishers, 2nd ed., Boca Raton, FL: CRC Press.
  • Padmavathiamma, P. K., and L. Y. Li. 2007. Phytoremediation technology: Hyperaccumulation Metals in Plants. Water, Air, and Soil Pollution 184:105–26. doi:10.1007/s11270-007-9401-5.
  • Purakayastha, T. J. 2007. Phytoremediation–the green cure technology for amelioration of heavy metal contaminated soils. 26-30. Indian Farming57(2): 17–19.
  • Ramana, S., A. K. Biswas, A. B. Ajay, and S. Singh. 2016. Potential of mestha (Hibiscus sabdarifa) for remediation of soils contaminated with chromium. Journal of Natural Fibres 13 (5):597–602. doi:10.1080/15440478.2015.1093440.
  • Ramana, S., S. Srivastava, A. K. Biswas, and A. B. Ajay. 2017. Assessment of century plant (Agave americana) for remediation of chromium contaminated soils. The Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences 87 (4):1159–65. doi:10.1007/s40011-015-0685-8.
  • U.S.P.A. 2000. Introduction to Phytoremediation. Cincinnati, OH: U.S. Environmental Protection Agency, Office of Research and Development. EPA 600/R-99/107.
  • Vamerali, T., M. Bandiera, and G. Mosca. 2010. Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemistry Letters 8:1–17. doi:10.1007/s10311-009-0268-0.
  • Van der Ent, A., A. J. Baker, and R. D. Reeves. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil 362 (1–2):319–34. doi:10.1007/s11104-012-1287-3.
  • Wu, L. H., Y. M. Luo, X. R. Xing, and P. Christie. 2003. EDTA enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture, Ecosystems & Environment 102:307–18. doi:10.1016/j.agee.2003.09.002.
  • Zhang, W., C. Tu, and L. Q. Ma. 2002. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science of the Total Environment 300:167–77. doi:10.1016/S0048-9697(02)00165-1.
  • Zhuang, P., Q. W. Yang, H. B. Wang, and W. S. Shu. 2007. Phytoextraction of heavy metals by eight plant species in the field. Water, Air, and Soil Pollution 184:235–42. doi:10.1007/s11270-007-9412-2.
  • Zu, Y. Q., Y. Li, and C. Schvartz. 2005. Hyperaccumulation of Pb, Zn, and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment International 31:755–62. doi:10.1016/j.envint.2005.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.