222
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Improving the Sound Absorption of Natural Waste Material-based Sound Absorbers Using Micro-perforated Plates

ORCID Icon, , , ORCID Icon, , & ORCID Icon show all

References

  • Allafi, F., M. Hossain, J. Lalung, M. Shaah, A. Salehabadi, M. Ahmad, and A. Shadi. 2020. Advancements in applications of natural wool fiber: Review. Journal of Natural Fibers Taylor and Francis Inc: 1–16. doi:10.1080/15440478.2020.1745128.
  • Ashour, T., H. Georg, and W. Wu. 2011. Performance of straw bale wall: A case of study. Energy and Buildings 43 (8):1960–67. doi:10.1016/j.enbuild.2011.04.001.
  • Balaji, A., B. Karthikeyan, J. Swaminathan, and C. Sundar Raj. 2019. Effect of filler content of chemically treated short bagasse fiber-reinforced cardanol polymer composites. Journal of Natural Fibers 16 (4):613–27. doi:10.1080/15440478.2018.1431829.
  • Bansod, P. V., T. S. Teja, and A. R. Mohanty. 2017. Improvement of the sound absorption performance of jute felt-based sound absorbers using micro-perforated panels. Journal of Low Frequency Noise, Vibration and Active Control 36 (4):376–98. doi:10.1177/1461348417744307.
  • Beheshti, M. H., E. Taban, S. E. Samaei, M. Faridan, F. Khajehnasiri, L. Tajik Khaveh, M. Borhani Jebeli, A. Mehri, and A. Tajpoor. 2019. The influence of personality traits and gender on noise annoyance in laboratory studies. Personality and Individual Differences 148 (5):95–100. doi:10.1016/j.paid.2019.05.027.
  • Berardi, U., and G. Iannace. 2015. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 94:840–52. doi:10.1016/j.buildenv.2015.05.029.
  • Berardi, U., and G. Iannace. 2017. Predicting the sound absorption of natural materials: best-fit inverse laws for the acoustic impedance and the propagation constant. Applied Acoustics 115 (4):131–38. doi:10.1016/j.apacoust.2016.08.012.
  • Berardi, U., G. Iannace, and M. Di Gabriele. 2016. Characterization of sheep wool panels for room acoustic applications. In Proceedings of Meetings on Acoustics. V. 28. Acoustical Society of America. 015001. DOI: 10.1121/2.0000336.
  • Berardi, U., G. Iannace, and M. Di Gabriele. 2017. The acoustic characterization of broom fibers. Journal of Natural Fibers 14 (6):858–63. doi:10.1080/15440478.2017.1279995.
  • Bravo, T., and C. Maury. 2018. Sound attenuation and absorption by micro-perforated panels backed by anisotropic fibrous materials: Theoretical and experimental study. Journal of Sound and Vibration 425 (2):189–207. doi:10.1016/j.jsv.2018.04.006.
  • Broda, J., and Bączek. 2020. Acoustic properties of multi-layer wool nonwoven structures. Journal of Natural Fibers 17 (11):1567–81. doi:10.1080/15440478.2019.1584078.
  • Cascone, S. M., S. Cascone, and M. Vitale. 2020. Building insulating materials from agricultural by-products: A review. Smart Innovation, Systems and Technologies 163 (Springer):309–18. doi:10.1007/978-981-32-9868-2_26.
  • Chen, S., and Y. Jiang. 2018. The acoustic property study of polyurethane foam with addition of bamboo leaves particles. Polymer Composites 39 (4):1370–81. doi:10.1002/pc.24078.
  • Cobo, P., and F. Simón. 2019. Multiple-layer microperforated panels as sound absorbers in buildings: A review. Buildings 9 (2):53. doi:10.3390/buildings9020053.
  • Del Rey, R., A. Uris, J. Alba, and P. Candelas. 2017. Characterization of sheep wool as a sustainable material for acoustic applications. Materials 10 (11):1277. doi:10.3390/ma10111277.
  • Gadea Borrell, J. M., E. Juliá Sanchis, J. Segura Alcaraz, and I. Montava Belda. 2020. Sustainable sound absorbers from fruit stones waste. Applied Acoustics 161 (2):107174. doi:10.1016/j.apacoust.2019.107174.
  • Gokulkumar, S., P. R. Thyla, L. Prabhu, and S. Sathish. 2019. Measuring methods of acoustic properties and influence of physical parameters on natural fibers: A review. Journal of Natural Fibers. April Informa UK Limited, 1–20. doi:10.1080/15440478.2019.1598913.
  • Hajiha, H., and M. Sain. 2015. The use of sugarcane bagasse fibres as reinforcements in composites. In Biofiber reinforcements in composite materials, Woodhead Publishing, Edited by: Omar Faruk and Mohini Sain. 525–49. Elsevier Inc. doi:10.1533/9781782421276.4.525.
  • Hariprasad, K., K. Ravichandran, V. Jayaseelan, and T. Muthuramalingam. 2020. Acoustic and mechanical characterisation of polypropylene composites reinforced by natural fibres for automotive applications. Journal of Materials Research and Technology 9 ((6):14029–35. doi:10.1016/j.jmrt.2020.09.112.
  • Hoareau, W., W. G. Trindade, B. Siegmund, A. Castellan, and E. Frollini. 2004. Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: Characterization and stability. Polymer Degradation and Stability 86 (3):567–76. doi:10.1016/j.polymdegradstab.2004.07.005.
  • Kim, J. W., and J. M. Mendoza. 2015. Sound absorption performance of layered micro-perforated and poro-elastic materials. Noise Control Engineering Journal 61 (1):100–13. doi:10.3397/1/1.3761010.
  • Lim, Z. Y., A. Putra, M. J. M. Nor, and M. Y. Yaakob. 2018. Sound absorption performance of natural kenaf fibres. Applied Acoustics 130 (7):107–14. doi:10.1016/j.apacoust.2017.09.012.
  • Maa, D. Y. 1998. Potential of microperforated panel absorber. The Journal of the Acoustical Society of America 104 (5):2861–66. doi:10.1121/1.423870.
  • Malawade, U. A., and M. G. Jadhav. 2020. Investigation of the acoustic performance of bagasse. Journal of Materials Research and Technology 9 (1):882–89. doi:10.1016/j.jmrt.2019.11.028.
  • Palak, H., and B. K. Kayaoğlu. 2020. Analysis of the effect of fiber cross section and different bonding methods on sound absorption performance of PET fiber based nonwovens using taguchi method. Journal of the Textile Institute 111 (4):575–85. doi:10.1080/00405000.2019.1651605.
  • Papadopoulos, A. M. 2005. State of the art in thermal insulation materials and aims for future developments. Energy and Buildings 37 (1):77–86. doi:10.1016/j.enbuild.2004.05.006.
  • Patnaik, A., M. Mvubu, S. Muniyasamy, A. Botha, and R. D. Anandjiwala. 2015. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings 92:161–69. doi:10.1016/j.enbuild.2015.01.056.
  • Putra, A., K. H. Or, M. Z. Selamat, M. J. M. Nor, M. H. Hassan, and I. Prasetiyo. 2018. Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics 136:9–15. doi:10.1016/j.apacoust.2018.01.029.
  • Qian, Y. J., K. Cui, S. M. Liu, Z. B. Li, D. Y. Kong, and S. M. Sun. 2014. Numerical study of the acoustic properties of micro-perforated panels with tapered hole. Noise Control Engineering Journal 62 (3):152–59. doi:10.3397/1/376216.
  • Ramamoorthy, M., and R. S. Rengasamy. 2019. Study on the effects of denier and shapes of polyester fibres on acoustic performance of needle-punched nonwovens with air-gap: Comparison of artificial neural network and regression modelling approaches to predict the sound absorption coefficient of nonwovens. Journal of the Textile Institute 110 (5):715–23. doi:10.1080/00405000.2018.1512834.
  • Sakagami, K., S. Kobatake, K. Kano, M. Morimoto and m Yairi. 2011. sound absorption characteristics of a single microperforated panel absorber backed by a porous absorbent layer. Acoustics Australia 39(3):95–100
  • Sakagami, K., M. Morimoto, M. Yairi, and A. Minemura. 2008. A pilot study on improving the absorptivity of a thick microperforated panel absorber. Applied Acoustics 69 (2):179–82. doi:10.1016/j.apacoust.2006.09.008.
  • Sakagami, K., T. Nakamori, M. Morimoto, and M. Yairi. 2009. Double-leaf microperforated panel space absorbers: A revised theory and detailed analysis. Applied Acoustics 70 (5):703–09. doi:10.1016/j.apacoust.2008.09.004.
  • Sanjuán, R., J. Anzaldo, J. Vargas, J. Turrado, and R. Patt. 2001. Morphological and chemical composition of pith and fibers from Mexican sugarcane bagasse. Holz als Roh - und Werkstoff 59 (6):447–50. doi:10.1007/s001070100236.
  • Santoni, A., P. Bonfiglio, P. Fausti, C. Marescotti, V. Mazzanti, F. Mollica, and F. Pompoli. 2019. Improving the sound absorption performance of sustainable thermal insulation materials: natural hemp fibres. Applied Acoustics 150 (7):279–89. doi:10.1016/j.apacoust.2019.02.022.
  • Tang, X., and X. Yan. 2017. Acoustic energy absorption properties of fibrous materials: A review. composites part A. Applied Science and Manufacturing Elsevier Ltd. 101: 360–80. doi:10.1016/j.compositesa.2017.07.002.
  • Thilagavathi, G., S. N. Krishnan, N. Muthukumar, and S. Krishnan. 2018. Investigations on sound absorption properties of luffa fibrous mats. Journal of Natural Fibers 15 (3):445–51. doi:10.1080/15440478.2017.1349016.
  • Wu, F., Y. Xiao, D. Yu, H. Zhao, Y. Wang, and J. Wen. 2019. Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels. Applied Physics Letters 114 (15):151901. doi:10.1063/1.5090355.
  • Yuvaraj, L., and S. Jeyanthi. 2020. Acoustic performance of countersunk micro-perforated panel in multilayer porous material. Building Acoustics 27 (1):3–20. doi:10.1177/1351010X19886588.
  • Zach, J., A. Korjenic, V. Petránek, J. Hroudová, and T. Bednar. 2012. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy and Buildings 49:246–53. doi:10.1016/j.enbuild.2012.02.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.