172
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive Characterisation of the Morphological, Thermal and Kinetic Degradation Properties of Gluconacetobacter xylinus synthesised Bacterial Nanocellulose

ORCID Icon, , ORCID Icon, , , , & show all

References

  • Abba, M., B. B. Nyakuma, Z. Ibrahim, J. B. Ali, S. I. A. Razak, and R. Salihu. 2020. Physicochemical, Morphological, and Microstructural Characterisation of Bacterial Nanocellulose from Gluconacetobacter xylinus BCZM. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2020.1857896.
  • Abba, M., M. Abdullahi, M. H. M. Nor, C. S. Chong, and Z. Ibrahim. 2017. Isolation and Characterisation of Locally Isolated Gluconacetobacter xylinus BCZM sp. with Nanocellulose Producing Potentials. IET Nanobiotechnology 12:52–56.
  • Abrishami, F., Chizari, M., Zohari, N. and Pourmosavi, S.A., 2019. Study on Thermal Stability and Decomposition Kinetics of Bis (2, 2‐Dinitropropyl) Fumarate (BDNPF) as a Melt Cast Explosive by Model‐Free Methods. Propellants, Explosives, Pyrotechnics, 44(11):1446–1449
  • Akhlaghi, S. P., R. C. Berry, and K. C. Tam. 2013. Surface Modification of Cellulose Nanocrystal with Chitosan Oligosaccharide for Drug Delivery Applications. Cellulose 20 (4):1747–64. doi:10.1007/s10570-013-9954-y.
  • Bhattacharya, A., Sadaf, A., Dubey, S., Singh, R.P. and Khare, S.K., 2020. Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions. Environmental Science and Pollution Research, 1–8. https://doi.org/10.1007/s11356-020-08845–7
  • Blanco, A., Monte, M.C., Campano, C., Balea, A., Merayo, N. and Negro, C., 2018. Nanocellulose for industrial use: cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). In Handbook of Nanomaterials for Industrial Applications. 74–126, Elsevier BV, The Netherlands
  • Curvello, R., V. S. Raghuwanshi, and G. Garnier. 2019. Engineering Nanocellulose Hydrogels for Biomedical Applications. Advances in Colloid and Interface Science 267:47–61. doi:10.1016/j.cis.2019.03.002.
  • Da Silva, J. C. G., J. G. De Albuquerque, W. V. De Araujo Galdino, R. F. De Sena, and S. L. F. Andersen. 2020. Single-Step and Multi-Step Thermokinetic Study–Deconvolution Method as a Simple Pathway for Describe Properly the Biomass Pyrolysis for Energy Conversion. Energy Conversion and Management 209:112653. doi:10.1016/j.enconman.2020.112653.
  • Derami, H. G., Q. Jiang, D. Ghim, S. Cao, Y. J. Chandar, J. J. Morrissey, Y. S. Jun, and S. Singamaneni. 2019. A Robust and Scalable Polydopamine/Bacterial Nanocellulose Hybrid Membrane for Efficient Wastewater Treatment. ACS Applied Nano Materials 2 (2):1092–101. doi:10.1021/acsanm.9b00022.
  • Dong, X.-B., W. Huang, Y.-B. Bian, X. Feng, S. A. Ibrahim, D.-F. Shi, X. Qiao, and Y. Liu. 2019. Remediation and Mechanisms of Cadmium Biosorption by a Cadmium-Binding Protein from Lentinula edodes. Journal of Agricultural and Food Chemistry 67 (41):11373–79. doi:10.1021/acs.jafc.9b04741.
  • Dwivedi, K. K., Karmakar, M. and Chatterjee, P. 2020. Thermal Degradation, Characterization and Kinetic Modeling of Different Particle Size Coal through TGA. Thermal Science and Engineering Progress, 18, 100523
  • Fu, L., J. Zhang, and G. Yang. 2013a. Present Status and Applications of Bacterial Cellulose-Based Materials for Skin Tissue Repair. Carbohydrate Polymers 92 (2):1432–42. doi:10.1016/j.carbpol.2012.10.071.
  • Fu, L., P. Zhou, S. Zhang, and G. Yang. 2013b. Evaluation of Bacterial Nanocellulose-Based Uniform Wound Dressing for Large Area Skin Transplantation. Materials Science and Engineering: C 33 (5):2995–3000. doi:10.1016/j.msec.2013.03.026.
  • Gatenholm, P., and D. Klemm. 2010. Bacterial Nanocellulose as a Renewable Material for Biomedical Applications. MRS Bulletin 35 (3):208–13. doi:10.1557/mrs2010.653.
  • Hestrin, S., and M. Schramm. 1954. Synthesis of Cellulose by Acetobacter xylinum. 2. Preparation of Freeze-Dried Cells Capable of Polymerizing Glucose to Cellulose. Biochemical Journal 58 (2):345–52. doi:10.1042/bj0580345.
  • Jacek, P., F. Dourado, M. Gama, and S. Bielecki. 2019. Molecular Aspects of Bacterial Nanocellulose Biosynthesis. Microbial Biotechnology 12 (4):633–49. doi:10.1111/1751-7915.13386.
  • Jahan, K., N. Kumar, and V. Verma. 2018. Removal of Hexavalent Chromium from Potable Drinking Using a Polyaniline-Coated Bacterial Cellulose Mat. Environmental Science: Water Research & Technology 4:1589–603.
  • Jozala, A. F., L. C. De Lencastre-Novaes, A. M. Lopes, V. De Carvalho Santos-Ebinuma, P. G. Mazzola, A. Pessoa-Jr, D. Grotto, M. Gerenutti, and M. V. Chaud. 2016. Bacterial Nanocellulose Production and Application: A 10-Year Overview. Appl Microbiol Biotechnol 100 (5):2063–72. doi:10.1007/s00253-015-7243-4.
  • Kamel, R., N. A. El-Wakil, A. Dufresne, and N. A. Elkasabgy. 2020. Nanocellulose: From an Agricultural Waste to a Valuable Pharmaceutical Ingredient. International Journal of Biological Macromolecules 163:1579–90. doi:10.1016/j.ijbiomac.2020.07.242.
  • Kargarzadeh, H., I. Ahmad, I. Abdullah, A. Dufresne, S. Y. Zainudin, and R. M. Sheltami. 2012. Effects of Hydrolysis Conditions on the Morphology, Crystallinity, and Thermal Stability of Cellulose Nanocrystals Extracted from Kenaf Bast Fibers. Cellulose 19 (3):855–66. doi:10.1007/s10570-012-9684-6.
  • Klemm, D., D. Schumann, U. Udhardt, and S. Marsch. 2001. Bacterial Synthesized Cellulose—Artificial Blood Vessels for Microsurgery. Progress in Polymer Science 26 (9):1561–603. doi:10.1016/S0079-6700(01)00021-1.
  • Li, P., J. A. Sirviö, B. Asante, and H. Liimatainen. 2018. Recyclable Deep Eutectic Solvent for the Production of Cationic Nanocelluloses. Carbohydrate Polymers 199:219–27. doi:10.1016/j.carbpol.2018.07.024.
  • Lin, N., and A. Dufresne. 2014. Nanocellulose in Biomedicine: Current Status and Future Prospect. European Polymer Journal 59:302–25. doi:10.1016/j.eurpolymj.2014.07.025.
  • Martínez Ávila, H., S. Schwarz, E.-M. Feldmann, A. Mantas, A. Von Bomhard, P. Gatenholm, and N. Rotter. 2014. Biocompatibility Evaluation of Densified Bacterial Nanocellulose Hydrogel as an Implant Material for Auricular Cartilage Regeneration. Applied Microbiology and Biotechnology 98 (17):7423–35. doi:10.1007/s00253-014-5819-z.
  • Mohammadkazemi, F., K. Doosthoseini, E. Ganjian, and M. Azin. 2015. Manufacturing of Bacterial Nano-Cellulose Reinforced Fiber−Cement Composites. Construction and Building Materials 101:958–64. doi:10.1016/j.conbuildmat.2015.10.093.
  • Molina-Ramírez, C., A. Cañas-Gutiérrez, C. Castro, R. Zuluaga, and P. Gañán. 2020. Effect of Production Process Scale-up on the Characteristics and Properties of Bacterial Nanocellulose Obtained from Overripe Banana Culture Medium. Carbohydrate Polymers 240:116341. doi:10.1016/j.carbpol.2020.116341.
  • Moon, R. J., A. Martini, J. Nairn, J. Simonsen, and J. Youngblood. 2011. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews 40:3941–94.
  • Müller, A., Z. Ni, N. Hessler, F. Wesarg, F. A. Müller, D. Kralisch, and D. Fischer. 2013. The Biopolymer Bacterial Nanocellulose as Drug Delivery System: Investigation of Drug Loading and Release Using the Model Protein Albumin. Journal of Pharmaceutical Sciences 102 (2):579–92. doi:10.1002/jps.23385.
  • Mumbach, G. D., Alves, J. L. F., Da Silva, J. C. G., Di Domenico, M., De Sena, R. F., Marangoni, C., Machado, R. a. F. and Bolzan, A. 2020. Pyrolysis of Cocoa Shell and Its Bioenergy Potential: Evaluating the Kinetic Triplet, Thermodynamic Parameters, and Evolved Gas Analysis Using TGA-FTIR. Biomass Conversion and Biorefinery 1–17. https://doi.org/10.1007/s13399-020-01058–5
  • Niamsap, T., N. T. Lam, and P. Sukyai. 2019. Production of Hydroxyapatite-Bacterial Nanocellulose Scaffold with Assist of Cellulose Nanocrystals. Carbohydrate Polymers 205:159–66. doi:10.1016/j.carbpol.2018.10.034.
  • Numata, Y., L. Mazzarino, and R. Borsali. 2015. A Slow-Release System of Bacterial Cellulose Gel and Nanoparticles for Hydrophobic Active Ingredients. International Journal of Pharmaceutics 486 (1–2):217–25. doi:10.1016/j.ijpharm.2015.03.068.
  • Nyakuma, B. B., A. Ahmad, A. Johari, T. A. Tuan, O. Oladokun, and D. Y. Aminu. 2015. Non-Isothermal Kinetic Analysis of Oil Palm Empty Fruit Bunch Pellets by Thermogravimetric Analysis. Chemical Engineering Transactions 45:1327–32.
  • Nyakuma, B. B., S. Wong, and O. Oladokun. 2019. Non-Oxidative Thermal Decomposition of Oil Palm Empty Fruit Bunch Pellets: Fuel Characterisation, Thermogravimetric, Kinetic, and Thermodynamic Analyses. Biomass Conversion and Biorefinery. doi:10.1007/s13399-019-00568-1.
  • Nyakuma, B. B., S. L. Wong, H. M. Faizal, H. U. Hambali, O. Oladokun, and T. A. T. Abdullah. 2020a. Carbon Dioxide Torrefaction of Oil Palm Empty Fruit Bunches Pellets: Characterisation and Optimisation by Response Surface Methodology. Biomass Conversion and Biorefinery. doi:10.1007/s13399-020-01071-8.
  • Nyakuma, B. B., S. L. Wong, O. Oladokun, A. A. Bello, H. U. Hambali, T. A. T. Abdullah, and K. Y. Wong. 2020b. Review of the Fuel Properties, Characterisation Techniques, and Pre-Treatment Technologies for Oil Palm Empty Fruit Bunches. Biomass Conversion and Biorefinery. doi:10.1007/s13399-020-01133-x.
  • Phanthong, P., G. Guan, Y. Ma, X. Hao, and A. Abudula. 2016. Effect of Ball Milling on the Production of Nanocellulose Using Mild Acid Hydrolysis Method. Journal of the Taiwan Institute of Chemical Engineers 60:617–22. doi:10.1016/j.jtice.2015.11.001.
  • Rajwade, J., K. Paknikar, and J. Kumbhar. 2015. Applications of Bacterial Cellulose and Its Composites in Biomedicine. Applied Microbiology and Biotechnology 99 (6):2491–511. doi:10.1007/s00253-015-6426-3.
  • Ray, S. and Cooney, R.P. 2018. Thermal degradation of polymer and polymer composites. In Handbook of environmental degradation of materials. 185–206. William Andrew Publishing, Elsevier BV, The Netherlands
  • Sakwises, L., N. Rodthongkum, and S. Ummartyotin. 2017. Sno2- and Bacterial-Cellulose Nanofiber-Based Composites as a Novel Platform for Nickel-Ion Detection. Journal of Molecular Liquids 248:246–52. doi:10.1016/j.molliq.2017.10.047.
  • Sanchis, M., M. Carsí, C. Gómez, M. Culebras, K. Gonzales, and F. Torres. 2017. Monitoring Molecular Dynamics of Bacterial Cellulose Composites Reinforced with Graphene Oxide by Carboxymethyl Cellulose Addition. Carbohydrate Polymers 157:353–60. doi:10.1016/j.carbpol.2016.10.001.
  • Santmartí, A. and Lee, K.-Y. 2018. Crystallinity and Thermal Stability of Nanocellulose. Nanocellulose and Sustainability: Production, properties, applications, and case studies, 67–86, CRC Press, Boca Raton, Florida, United States (US)
  • Shah, N., Ul-Islam, M., Khattak, W. A. and Park, J. K. 2013a. Overview of Bacterial Cellulose Composites: A Multipurpose Advanced Material. Carbohydrate Polymers 98(2): 1585–1598
  • Shankar, S., and J.-W. Rhim. 2016. Preparation of Nanocellulose from Micro-Crystalline Cellulose: The Effect on the Performance and Properties of Agar-Based Composite Films. Carbohydrate Polymers 135:18–26. doi:10.1016/j.carbpol.2015.08.082.
  • Skočaj, M. 2019. Bacterial Nanocellulose in Papermaking. Cellulose 26 (11):6477–88. doi:10.1007/s10570-019-02566-y.
  • Slopiecka, K., P. Bartocci, and F. Fantozzi. 2012. Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis. Applied Energy 97:491–97. doi:10.1016/j.apenergy.2011.12.056.
  • Soria-Verdugo, A., E. Goos, N. García-Hernando, and U. Riedel. 2018. Analyzing the Pyrolysis Kinetics of Several Microalgae Species by Various Differential and Integral Isoconversional Kinetic Methods and the Distributed Activation Energy Model. Algal Research 32:11–29. doi:10.1016/j.algal.2018.03.005.
  • Sun, Q., W. Li, H. Chen, B. Li, and Q. Sun. 2006. Devolatilization Characteristics of Shenmu Coal Macerals and Kinetic Analysis. Energy Sources, Part A 28 (9):865–74. doi:10.1080/009083190910361.
  • Thorat, M. N., and S. G. Dastager. 2018. High yield production of cellulose by a Komagataeibacter rhaeticus PG2 strain isolated from pomegranate as a new host. RSC Advances 8 (52):29797–805. doi:10.1039/C8RA05295F.
  • Yang, Y., J. Jia, J. Xing, J. Chen, and S. Lu. 2013. Isolation and Characteristics Analysis of a Novel High Bacterial Cellulose Producing Strain Gluconacetobacter Intermedius Cis26. Carbohydrate Polymers 92 (2):2012–17. doi:10.1016/j.carbpol.2012.11.065.
  • Yingkamhaeng, N., I. Intapan, and P. Sukyai. 2018. Fabrication and Characterisation of Functionalised Superparamagnetic Bacterial Nanocellulose Using Ultrasonic-Assisted in Situ Synthesis. Fibers and Polymers 19 (3):489–97. doi:10.1007/s12221-018-7738-6.
  • Zhuo, X., C. Liu, R. Pan, X. Dong, and Y. Li. 2017. Nanocellulose Mechanically Isolated from Amorpha fruticosa Linn. ACS Sustainable Chemistry & Engineering 5 (5):4414–20. doi:10.1021/acssuschemeng.7b00478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.