208
Views
2
CrossRef citations to date
0
Altmetric
Research Article

New Polish Oilseed Hemp Cultivar Henola – Cultivation, Properties and Utilization for Bioethanol Production

ORCID Icon, , &

References

  • Adeniyi, O. M., U. Azimov, and A. Burluka. 2018. Algae biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews 90:316–35. doi:10.1016/j.rser.2018.03.067.
  • Ahmad, M., K. Ullah, M. A. Khan, M. Zafar, M. Tariq, S. Ali, and S. Sultana. 2011. Physicochemical analysis of hemp oil biodiesel: A promising non edible new source for bioenergy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33 (14):1365–74. doi:10.1080/15567036.2010.499420.
  • Alaru, M., L. Kukk, J. Olt, A. Menind, R. Lauk, E. Vollmer, and A. Astover. 2011. Lignin content and briquette quality of different fibre hemp plant types and energy sunflower. Field Crops Research 124 (3):332–39. doi:10.1016/j.fcr.2011.06.024.
  • Alvira, P., E. Tomás-Pejó, M. Ballesteros, and M. J. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology 101 (13):4851–61. doi:10.1016/j.biortech.2009.11.093.
  • Aubin, M. P., P. Seguin, A. Vanasse, G. F. Tremblay, A. F. Mustafa, and J. B. Charron. 2015. Industrial hemp response to nitrogen, phosphorus, and potassium fertilization. Crop, Forage & Turfgrass Management 1 (1):1–10. doi:10.2134/cftm2015.0159.
  • Barta, Z., J. Oliva, I. Ballesteros, D. Dienes, M. Ballesteros, and K. Réczey. 2010. Refining hemp hurds into fermentable sugars or ethanol. Chemical and Biochemical Engineering Quarterly 24:331–39.
  • Batog, J., and A. Wawro. 2019. Process of obtaining bioethanol from sorghum biomass using genome shuffling. Cellulose Chemistry and Technology 53 (5–6):459–67. doi:10.35812/CelluloseChemTechnol.2019.53.46.
  • Batog, J., J. Frankowski, A. Wawro, and A. Łacka. 2020. Bioethanol production from biomass of selected sorghum varieties cultivated as main and second crop. Energies 13 (23):6291. doi:10.3390/en13236291.
  • Białas, W., D. Wojciechowska, D. Szymanowska, and W. Grajek. 2009. Optymalizacja procesu jednoczesnej hydrolizy i fermentacji natywnej skrobi metodą powierzchni odpowiedzi. (Optimizing the process of simultaneous hydrolysis and fermentation of native starch by the response surface method). Biotechnologia 87:183–99.
  • Booth, M. 2015. Cannabis: A history, 368. NY: Macmillan.
  • Burczyk, H., and G. Oleszak. 2016. Konopie oleiste (Cannabis sativa L. var. olrifera) uprawiane na nasiona do produkcji oleju i biogazu. Problemy Inżynierii Rolniczej 94:109–16.
  • Burczyk, H., J. Batog, J. Frankowski, and A. Wawro. 2017. Plonowanie wybranych odmian sorga uprawianych w plonie głównym i wtórnym do produkcji bioetanolu. Zagadnienia Doradztwa Rolniczego 90:70–79.
  • Burczyk, H., and J. Frankowski. 2018. Henola - pierwsza polska odmiana konopi oleistych. Zagadnienia Doradztwa Rolniczego 93:89–101.
  • Burczyk, H., L. Grabowska, J. Kołodziej, and M. Strybe. 2008. Industrial hemp as a raw material for energy production. Journal of Industrial Hemp 13 (1):37–48. doi:10.1080/15377880801898717.
  • Butsic, V., J. K. Carah, M. Baumann, C. Stephens, and J. C. Brenner. 2018. The emergence of cannabis agriculture frontiers as environmental threats. Environmental Research Letters 13 (12):124017. doi:10.1088/1748-9326/aaeade.
  • Carriquiry, M. A., X. Du, and G. R. Timilsina. 2011. Second generation biofuels: Economics and policies. Energy Policy 39 (7):4222–34. doi:10.1016/j.enpol.2011.04.036.
  • Chandel, A. K., E. S. Chan., R. Rudravaram, M. L. Narasu, L. V. Rao, and P. Ravindra. 2007. Economics and environmental impact of bioethanol production technologies: An appraisal. Biotechnology and Molecular Biology Review 2:14–32.
  • Chandra, S., H. Lata, and M. A. ElSohly, Eds. 2017. Cannabis sativa L. – Botany and biotechnology. New York: Springer.
  • Clarke, R. C., and M. D. Merlin. 2016. Cannabis: Evolution and ethnobotany. California: University of California Press.
  • Cotana, F., G. Cavalaglio, A. Nicolini, M. Gelosia, V. Coccia, A. Petrozzi, and L. Brinchi. 2014. Lignin as Co-product of Second Generation Bioethanol Production from Ligno-cellulosic Biomass. Energy Procedia 45:52–60. doi:10.1016/j.egypro.2014.01.007.
  • Das, L., E. Liu, A. Saeed, D. W. Williams, H. Hu, C. Li, A. E. Ray, and J. Shi. 2017. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresource Technology 244:641–49. doi:10.1016/j.biortech.2017.08.008.
  • De Padua, L. S., N. Bunyapraphatsara, and R. H. M. J. Lemmons. 1999. Plant Resources of South-East Asia. Medicinal and Poisonous Plants, de Padua, L. S., Bunyapraphatsara, N. & Lemmens, R. H. M. J. (eds), Vol. 12, 167–75. Leiden: Backhuys Publishers.
  • Demirbas, A. 2011. Competitive liquid biofuels from biomass. Applied Energy 88 (1):17–28. doi:10.1016/j.apenergy.2010.07.016.
  • Finnan, J., and B. Burke. 2013. Nitrogen fertilization to optimize the greenhouse gas balance of hemp crops grown for biomass. Gcb Bioenergy 6 (6):701–12. doi:10.1111/gcbb.12045.
  • Frankowski, J., M. Zaborowicz, J. Dach, W. Czekała, and J. Przybył. 2020. Biological waste management in the case of a pandemic emergency and other natural disasters. Determination of bioenergy production from floricultural waste and modeling of methane production using deep neural modeling methods. Energies 13 (11):3014. doi:10.3390/en13113014.
  • Gieparda, W., J. Batog, and A. Wawro. 2019. Obróbka wstępna biomasy konopi w procesie otrzymywania bioetanolu. Przemysł Chemiczny 98:1958–61.
  • Grzelak, M., E. Gaweł, M. Murawski, B. Waliszewska, and A. Knioła. 2016. Habitat conditions, yielding and potential energy use of biomass with dominant wood small-reed (Calamagrostis epigejos). Fragmenta Agronomica 33:38–45.
  • Herer, J., and M. Bröckers. 2014. Die wiederentdeckung der nutzpflanze hanf, 526. Solura: Nachtschatten Verlag.
  • Kraszkiewicz, A., M. Kachel, S. Parafiniuk, G. Zając, I. Niedziółka, and M. Sprawka. 2019. Assessment of the possibility of using hemp biomass (Cannabis sativa L.) for energy purposes: A case study. Applied Sciences 9 (20):4437–49. doi:10.3390/app9204437.
  • Kuglarz, M., M. Alvarado-Morales, D. Karakashev, and I. Angelidaki. 2016. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresource Technology 200:639–47. doi:10.1016/j.biortech.2015.10.081.
  • Lalak, J., A. Kasprzycka, A. Murat, E. M. Paprota, and J. Tys. 2014. Obróbka wstępna biomasy bogatej w lignocelulozę w celu zwiększenia wydajności fermentacji metanowej (review). (Pretreatment of lignocellulose rich biomass to increase the efficiency of the methane fermentation). Acta Agrophysica 21:51–62.
  • Lee, R. A., and J.-M. Lavoie. 2013. From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers 3 (2):6–11. doi:10.2527/af.2013-0010.
  • Leizer, C., D. Ribnicky, A. Poulev, S. Dushenkov, and I. Raskin. 2000. The composition of hemp seed oil and its potential as an important source of nutrition. Journal of Nutraceuticals, Functional & Medical Foods 2 (4):35–53. doi:10.1300/J133v02n04_04.
  • Liu, K., X. Lin, J. Yue, X. Li, X. Fang, M. Zhu, J. Lin, J. Qua, and L. Xiao. 2010. High concentration ethanol production from corncob residues by fed–batch strategy. Bioresource Technology 101:4952–58.
  • Łochyńska, M., and J. Frankowski. 2019. Impact of Silkworm Excrement Organic Fertilizer on Hemp Biomass Yield and Composition. Journal of Ecological Engineering 20:63–71.
  • Łochyńska, M., and J. Frankowski. 2021. The effects of silkworm excrement organic fertilizer on the hemp yield. Journal of Natural Fibers 1–23. doi:10.1080/15440478.2021.1921665.
  • López-Linares, J. C., I. Romero, C. Cara, E. Ruiz, M. Moya, and E. Castro. 2014. Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel 122:112–18.
  • Naik, S. N., V. V. Goud, P. K. Rout, and A. K. Dalai. 2010. Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews 14:578–97.
  • Nigam, P. S., and A. Singh. 2011. Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science 37:52–68.
  • Ojeda, K., E. Sánchez, M. El–Halwagi, and V. Kafarov. 2011. Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: Comparison of SHF, SSF and SSCF pathways. Chemical Engineering Journal 176:195–201.
  • Orlygsson, J. 2012. Ethanol production from biomass by a moderate thermophile, Clostridium AK1. Icelandic Agricultural Sciences 25:25–35.
  • Pagnani, G., M. Pellegrini, A. Galieni, S. D’Egidio, F. Matteucci, A. Ricci, F. Stagnari, M. Sergi, C. Lo Sterzo, M. Pisante, et al. 2018. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Industrial Crops and Products 123:75–83.
  • Papastylianou, P., I. Kakabouki, and I. Travlos. 2018. Effect of nitrogen fertilization on growth and yield of industrial hemp (Cannabis sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46:197–201.
  • Peters, H., and G. Nahas. 1999. A Brief History of Four Millennia (BC 2000 - AD 1974). In Marihuana and medicine, 3–7. Totowa, NY: Humana Press.
  • Prade, T., M. Finell, S. E. Svensson, and J. E. Mattsson. 2012a. Effect of harvest date on combustion related fuel properties of industrial hemp (Cannabis sativa L.). Fuel 102:592–604.
  • Prade, T., S. E. Svensson, and J. E. Mattsson. 2012b. Energy balances for biogas and solid biofuel production from industrial hemp. Biomass and Bioenergy 40:36–52.
  • Rathmann, R., A. Szklo, and R. Schaeffer. 2010. Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate. Renewable Energy 35:14–22.
  • Rehman, M. S. U., N. Rashid, A. Saif, T. Mahmood., and J. I. Han. 2013. Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renewable and Sustainable Energy Reviews 18:154–64.
  • Sarkar, N., S. K. Ghosh, S. Bannerjee, and K. Aikat. 2012. Bioethanol production from agricultural wastes: An overview. Renewable Energy 37:19–27.
  • Schroyen, M., S. W. Van Hulle, S. Holemans, H. Vervaeren, and K. Raes. 2017. Laccase enzyme detoxifies hydrolysates and improves biogas production from hemp straw and miscanthus. Bioresource Technology 244:597–604.
  • Shuba, E. S., and D. Kifle. 2018. Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renewable and Sustainable Energy Reviews 81:743–55.
  • Stolarski, M., M. Krzyzaniak, B. Waliszewska, S. Szczukowski, J. Tworkowski, and M. Zborowska. 2013. Lignocellulosic biomass derived from agricultural land as industrial and energy feedstock. Drewno. Prace Naukowe. Doniesienia. Komunikaty 189:5–23.
  • Strzelczyk, M., M. Łochyńska, and M. Chudy. 2021. Systematics and Botanical Characteristics of Industrial Hemp Cannabis Sativa L. Journal of Natural Fibers 1–23. doi:10.1080/15440478.2021.1889443.
  • Szambelan, K., J. Nowak, J. Frankowski, A. Szwengiel, H. Jeleń, and H. Burczyk. 2018. The comprehensive analysis of sorghum cultivated in Poland for energy purposes: Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods and their impact on bioethanol effectiveness and volatile by-products from the grain and the energy potential of sorghum straw. Bioresource Technology 250:750–57.
  • Taheripour, F., T. W. Hertel, W. E. Tyner, J. F. Beckman, and D. K. Birur. 2010. Biofuels and their by-products: Global economic and environmental implications. Biomass and Bioenergy 34:278–89.
  • Tan, I. S., and K. T. Lee. 2014. Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: An optimization study. Energy 78:53–62.
  • Tang, K., P. C. Struik, X. Yin, D. Calzolari, S. Musio, C. Thouminot, M. Bjelkova, V. Stramkale, G. Magagnini, and S. Amaducci. 2017. A comprehensive study of planting density and nitrogen fertilization effect on dual-purpose hemp (Cannabis sativa L.) cultivation. Industrial Crops and Products 107:427–38.
  • Van der Werf, H. M. G., W. C. A. Van Geel, L. J. C. Van Gils, and A. J. Haverkort. 1995. Nitrogen fertilization and row width affect self-thinning and productivity of fibre hemp (Cannabis sativa L.). Field Crops Research 42:27–37.
  • Van Roekel, G. J. 1994. Hemp pulp and paper production. Journal of International Hemp Association 1:12–14.
  • Vera, C. L., S. S. Malhi, S. M. Phelps, W. E. May, and E. N. Johnson. 2010. N, P, and S fertilization effects on industrial hemp in Saskatchewan. Canadian Journal of Plant Science 90:179–84.
  • Waliszewska, B., M. Zborowska, W. Prądzyński, and A. Kominer. 2006. Chemical composition and gross calorific value of selected Salix hybrids. Edited by: S. Kurjtko, J. Kudela and R. Lagana, In Wood structure and properties, 171–73. Slovakia: Arbora Publishers.
  • Wawro, A. 2017. Ulepszanie właściwości technologicznych drożdży gorzelniczych Saccharomyces cerevisiae metodą tasowania genomowego (Improving the technological properties of Saccharomyces cerevisiae distillery yeast by genomic shuffling). PhD Thesis, pp. 151. Poznań: University of Life Science.
  • Wawro, A., J. Batog, and W. Gieparda. 2019. Chemical and Enzymatic Treatment of Hemp Biomass for Bioethanol Production. Applied Sciences 9:5348.
  • Wingren, A., M. Galbe, and G. Zacchi. 2003. Techno‐economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnology Progress 19:1109–17.
  • Zhao, J., Y. Xu, W. Wang, J. Griffin, and D. Wang. 2020. Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol. Bioresource Technology 309:123383.
  • Zuardi, A. W. 2006. History of cannabis as a medicine: A review. Brazilian Journal of Psychiatry 28:153–57.
  • Zucaro, A., G. Fiorentino, and S. Ulgiati. 2020. Constraints, impacts and benefits of lignocellulose conversion pathways to liquid biofuels and biochemicals. Editors : Abu Yousuf, Filomena Sannino and Domenico Pirozzi, In Lignocellulosic Biomass to Liquid Biofuels, 249–82. New York: Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.