221
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of Glycerol Treatment for Improved Flexibility of Dried Bacterial Cellulose Nonwoven Fabric

ORCID Icon, , &

References

  • Almeidaa, I. F., T. Pereirab, N. H. C. S. Silvac, F. P. Gomesc, A. J. D. Silvestrec, C. S. R. Freirec, J. M. Sousa Loboa, and P. C. Costaa. 2014. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. European Journal of Pharmaceutics and Biopharmaceutics 86 (3):332–36. doi:10.1016/j.ejpb.2013.08.008.
  • Angtika, R. S., P. Widiyanti, and Aminatun. 2018. Bacterial cellulose-chitosan-glycerol biocomposite as artificial dura mater candidates for head trauma. Journal of Biomimetics, Biomaterials and Biomedical Engineering 36:7–16. https://doi.org/10.4028/www.scientific.net/JBBBE.36.7
  • Azadimanesh, F., and N. Mohammadi. 2015. A plasticizer index to universally correlate the normalized work of fracture and elastic modulus of plasticized cellulose triacetates. Carbohydrate Polymers 130:316–24. doi:10.1016/j.carbpol.2015.05.013.
  • Box, G. E. P., and D. W. Behnken. 1960. Some new three level design for the study of quantitative variables. Technometrics 2 (4):455–75. doi:10.1080/00401706.1960.10489912.
  • Brown, A. J. 1886. On an acetic ferment which forms cellulose. Journal of Chemical Society Transactions 49:432–39. doi:10.1039/CT8864900432.
  • Cazón, P., M. Vázquez, and G. Velazquez. 2019. Composite films with UV-barrier properties of bacterial cellulose with glycerol and poly (vinyl alcohol): puncture properties, solubility, and swelling degree. Biomacromolecules 20 (8):3115–25. doi:10.1021/acs.biomac.9b00704.
  • Cielecka, I., M. Szustak, H. Kalinowska, E. Gendaszewska-Darmach, M. Ryngajłło, W. Maniukiewicz, and S. Bielecki. 2019. Glycerol-plasticized bacterial nano cellulose-based composites with enhanced flexibility and liquid sorption capacity. Cellulose 26 (9):5409–26. doi:10.1007/s10570-019-02501-1.
  • Czaja, W. K., D. J. Young, M. Kawecki, and R. Malcolm Brown Jr. 2007. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8 (1):1–12. doi:10.1021/bm060620d.
  • Da Silva, F. M., and I. C. Gouveia. 2015. The role of technology towards a new bacterial-cellulose-based material for fashion design. Journal of Industrial and Intelligent Information 3 (2):168–72. doi:10.12720/jiii.3.2.168-172.
  • Domskiene, J., F. Sederaviciute, and J. Simonaityte. 2019. Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology 31 (5):644–52. doi:10.1108/IJCST-02-2019-0010.
  • Fan, G. J., Y. B. Han, Z. X. Gu, and D. M. Chen. 2008. Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). LWT Food Science and Technology 41 (1):155–60. doi:10.1016/j.lwt.2007.01.019.
  • Fernandes, M., M. Gama, F. Dourado, and A. P. Souto. 2019. Development of novel bacterial cellulose composites for the textile and shoe industry. Microbial Biotechnology 12 (4):650–61. doi:10.1111/1751-7915.13387.
  • Fillat, A., J. Martínez, C. Valls, et al. 2018. Bacterial cellulose for increasing barrier properties of paper products. Cellulose 25 (10):6093–105. doi:10.1007/s10570-018-1967-0.
  • Garcia, C., and M. A. Prieto. 2018. Bacterial cellulose as a potential bioleather substitute for the footwear industry. Microbial Biotechnology 12 (4):582–85. doi:10.1111/1751-7915.13306.
  • Gayathrya, G., and G. Gopalaswamy. 2014. Production and characterisation of microbial cellulosic fibre from Acetobacterxylinum. Indian Journal of Fibre and Textile Research 39 (1):93–96.
  • Guo, X., L. Chen, J. Tang, L. J. Jonsson, and F. F. Hong. 2016. Production of bacterial nanocellulose and enzyme from [AMIM]Cl-pretreated waste cotton fabrics: Effects of dyes on enzymatic saccharification and nanocellulose production. Journal of Chemical Technology and Biotechnology 91 (5):1413–21. doi:10.1002/jctb.4738.
  • Han, J., E. Shim, and H. R. Kim. 2019. Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Textile Research Journal 89 (6):1094–104. doi:10.1177/0040517518763989.
  • Hussain, Z., W. Sajjad, T. Khan, et al. 2019. Production of bacterial cellulose from industrial wastes: A review. Cellulose 26 (5):2895–911. doi:10.1007/s10570-019-02307-1.
  • Jennifer, H. 2017. Homegrown: Investigating design potential of bacterial cellulose. In: International textile and apparel association (ITAA) annual conference proceedings. 15. https://lib.dr.iastate.edu/itaa_proceedings/2017/design/15
  • Lee, S. 2020. https://en.wikipedia.org/wiki/Suzanne_Lee (Accessed on 27.February.2020)
  • Mihaleva, G. 2020. Bio matter in creative practises for fashion and design. AI & SOCIETY. doi:10.1007/s00146-020-00957-5.
  • Ng, F. M. C., and P. W. Wang. 2016. Natural self-grown fashion from bacterial cellulose: A paradigm shift design approach in fashion creation. Design Journal 19 (6):837–55. doi:10.1080/14606925.2016.1208388.
  • Ng, M. C. F., and W. Wang. 2015. A study of the receptivity to bacterial cellulosic pellicle for fashion. Research Journal of Textile and Apparal 19 (4):65–69. doi:10.1108/RJTA-19-04-2015-B007.
  • Rathinamoorthy, R. 2017. Assessment of moisture management characteristics of knitted casein and cotton fabric for intimate apparels. Indian Journal of Fiber and Textile Research 42 (4):488–94.
  • Rathinamoorthy, R., and G. Thilagavathi. 2013. Optimisation of Process conditions of cotton fabric treatment with Terminalia chebula extracts for antibacterial applications. Indian Journal of Fiber and Textile Research 38:293–303.
  • Rathinamoorthy, R., T. Aarthi, C. A. Aksayashree, P. Haridharani, V. Shruthi, and R. L. Vaishnikka. 2019. Development and characterization of self-assembled bacterial cellulose nonwoven film. Journal of Natural Fibers 1–14. doi:10.1080/15440478.2019.1701609.
  • Rohaeti, E., E. Laksono, and A. Rakhmawati. 2017. Characterization and the activity of bacterial cellulose prepared from rice waste water by addition with glycerol and chitosan. Agricultur and Biological Science 12 (8):241–48.
  • Savitskaya, I. S., D. H. Shokatayeva, A. S. Kistaubayeva, L. V. Ignatova, and I. E. Digel. 2019. Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells. Heliyon 5 (10):e02592. doi:10.1016/j.heliyon.2019.e02592.
  • Schramm, M., and S. Hestrin. 1954. “Factors affecting production of cellulose at the air/ liquid interface of a culture of acetobacter xylinum. The Journal of General Microbiology 11 (1):123–29. doi:10.1099/00221287-11-1-123.
  • Shim, E., and H. R. Kim. 2019. Coloration of bacterial cellulose using in situ and ex situ methods. Textile Research Journal 89 (7):1297–310. doi:10.1177/0040517518770673.
  • Solatorio, N., and C. C. Liao. 2019. Synthesis of cellulose by acetobacter xylinum: a comparison vegan leather to animal and imitation leather. Honors thesis. University of Wyoming, https://hdl.handle.net/20.500.11919/3860
  • Song, J. E., C. Silva, A. M. Cavaco-Paulo, and H. R. Kim. 2019. Functionalization of bacterial cellulose nonwoven by poly(fluorophenol) to improve its hydrophobicity and durability. Frontiers in Bioengineering and Biotechnology 7:332. doi:10.3389/fbioe.2019.00332.
  • Sun, Y., C. Meng, Y. Zheng, W. YajieXie, Y. W. He, K. Qiao, and L. Yue. 2018. The effects of two biocompatible plasticizers on the performance of dry bacterial cellulose membrane: A comparative study. Cellulose 25 (10):5893–908. doi:10.1007/s10570-018-1968-z.
  • Thenmozhi, R., R. Rathinamoorthy, and G. Thilagavathi. 2016. Optimisation of chitosan-honey composite film for wound dressing application. Indian Journal of Chemical Technology 23 (4):279–88.
  • Tyurin, I., V. Getmantseva, E. Andreeva, and O. Kashcheev. 2019. The study of the molding capabilities of bacterial cellulose. In: AUTEX2019—19th world textile conference on textiles at the crossroads. 11–15 June 2019, Ghent, Belgium. https://ojs.ugent.be/autex/article/view/11745
  • Zaborowska, M., A. Bodin, H. Bäckdahl, J. Popp, A. Goldstein, and P. Gatenholm. 2010. microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomaterialia 6 (7):2540–47. doi:10.1016/j.actbio.2010.01.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.