759
Views
3
CrossRef citations to date
0
Altmetric
Review

A Review on Characterization of Sheep Wool Impurities and Existing Techniques of Cleaning: Industrial and Environmental Challenges

, ORCID Icon, , , &

References

  • Allafi, F., M. S. Hossain, J. Lalung, M. Shaah, A. Salehabadi, M. I. Ahmad, and A. Shadi. 2020. Advancements in applications of natural wool fiber: review. Journal of Natural Fibers 1–16. doi:10.1080/15440478.2020.1745128.
  • Allafi, F., M. S. Hossain, M. O. Ab Kadir, M. Shaah, J. Lalung, and M. I. Ahmad. 2021. Waterless processing of sheep wool fiber in textile industry with supercritical co2: potential and challenges. Journal of Cleaner Production 285:124819. doi:10.1016/j.jclepro.2020.124819.
  • Ammayappan, L. 2013. Application of enzyme on woolen products for its value addition: An overview. Journal of Textile and Apparel, Technology and Management 8:3.
  • Ammayappan, L., ., and J. Moses. 2009. study of antimicrobial activity of aloevera, chitosan, and curcumin on cotton, wool, and rabbit hair. Fibers and Polymers 10 (2):161–66. doi:10.1007/s12221-009-0161-2.
  • Ananthashankar, R., and A. E. Ghaly. 2013. Production, characterization and treatment of textile effluents: a critical review. Journal of Chemical Engineering & Process Technology 05:01. doi:10.4172/2157-7048.1000182.
  • Anderson, C. A., and G. F. Wood. 1963. Bleaching of wool grease. Journal of the American Oil Chemists’ Society 40 (8):333–36. doi:10.1007/BF02631550.
  • Ang, H. M., and F. Himawan. 1994. Treatment of wool scouring wastewater for grease removal. Journal of Hazardous Materials 37 (1):117–26. doi:10.1016/0304-3894(94)85040-2.
  • Anpilov, A. M., Barkhudarov, E. M., Bark, Y. B., Zadiraka, Y. V., Christofi, M., Kozlov, Y. N., Kossyi, I. A., Kop'ev, V. A., Silakov, V.P., Taktakishvili, M. I., Temchin, S. M. 2001. Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. Journal of Physics D: Applied Physics, 34(6), 993–999. doi:10.1088/0022-3727/34/6/322
  • Asaulyuk, T., O. Semeshko, Y. Saribyekova, A. Kunik, and S. Myasnykov. 2017. Examining a change in the properties of coarse wool fiber under the influence of electrical discharge treatment. Eastern-European Journal of Enterprise Technologies 4 (1 (88)):50–55. doi:10.15587/1729-4061.2017.108269.
  • Aslanidou, D., I. Karapanagiotis, and C. Panayiotou. 2016. Tuneable textile cleaning and disinfection process based on supercritical co 2 and pickering emulsions. The Journal of Supercritical Fluids 118:128–39. doi:10.1016/j.supflu.2016.07.011.
  • Bahtiyari, M. İ., and K. Duran. 2013. A study on the usability of ultrasound in scouring of raw wool. Journal of Cleaner Production 41:283–90. doi:10.1016/j.jclepro.2012.09.009.
  • Bertini, F., M. Canetti, A. Patrucco, and M. Zoccola. 2013. Wool keratin-polypropylene composites: properties and thermal degradation. Polymer Degradation and Stability 98 (5):980–87. doi:10.1016/j.polymdegradstab.2013.02.011.
  • Braniša, J., K. Jomová, and M. Porubská. 2019. Scouring test of sheep wool intended for sorption. Fibres and Textiles in Eastern Europe 27 (2(134)):24–29. doi:10.5604/01.3001.0012.9983.
  • Cameron, B. A., and S. H. Robert. 2008. Wool studies with rambouillet sheep. Sheep and Goat Research Journal 23:11–14.
  • Cardamone, J. M., and J. Yao. 2004. DCCA shrinkproofing of wool: part ii: improving whiteness and surface properties. Textile Research Journal 74 (7):571–75. doi:10.1177/004051750407400701.
  • Cardamone, J. M., J. Yao, and A. Nuńez. 2004. Controlling shrinkage in wool fabrics: effective hydrogen peroxide systems. Textile Research Journal 74 (10):887–98. doi:10.1177/004051750407401008.
  • Caunce, J. F., S. I. Barry, and G. N. Mercer. 2008. A spatially dependent model for washing wool. Applied Mathematical Modelling 32 (4):389–404. doi:10.1016/j.apm.2006.12.010.
  • Czaplicki, Z., and K. Ruszkowski. 2014. Optimization of scouring alpaca wool by ultrasonic technique. Journal of Natural Fibers 11 (2):169–83. doi:10.1080/15440478.2013.864577.
  • Czaplicki, Z., and S. Strzelecki. 2019. Wool carbonization with an energy-efficient drying process. Journal of Natural Fibers 17 (12):1809–18. doi:10.1080/15440478.2019.1599312.
  • Dev, V. R. G., J. Venugopal, S. Sudha, G. Deepika, and S. Ramakrishna. 2009. Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohydrate Polymers 75 (4):646–50. doi:10.1016/j.carbpol.2008.09.003.
  • Diz, M., M. R. Infante, P. Erra, and A. Manresa. 2001. Antimicrobial activity of wool treated with a new thiol cationic surfactant. Textile Research Journal 71 (8):695–700. doi:10.1177/004051750107100808.
  • Evans, D. J., and M. Lanczki. 1997. Cleavage of integral surface lipids of wool by aminolysis. Textile Research Journal 67 (6):435–44. doi:10.1177/004051759706700608.
  • Gacen, J., and D. Cayuela. 2000. Comparison of wool bleaching with hydrogen peroxide in alkaline and acidic media. Coloration Technology 116 (1):13–15. doi:10.1111/j.1478-4408.2000.tb00003.x.
  • Gawish, S. M., H. Mashaly., H. Hm, R. Am, and F. R. 2017. Effect of mordant on UV protection and antimicrobial activity of cotton, wool, silk and nylon fabrics dyed with some natural dyes. Journal of Nanomedicine & Nanotechnology 8 (1):421-430.
  • Giannitti, F., M. Fraga, R. D. Caffarena, C. O. Schild, G. Banchero, A. G. Armién, G. Travería, D. Marthaler, S. J. Wells, and F. Riet-Correa. 2018. Mycobacterium paratuberculosis sheep type strain in uruguay: evidence for a wider geographic distribution in South America. The Journal of Infection in Developing Countries 12 (3):190–95. doi:10.3855/jidc.9751.
  • Gouveia, I. C., J. M. Fiadeiro, and J. A. Queiroz. 2008. Enzymatic removal of plant residues from wool: application of experimental design techniques for optimization parameters. Biochemical Engineering Journal 41 (2):157–65. doi:10.1016/j.bej.2008.04.008.
  • Halliday, L. A. (2002). 2 - Woolscouring, carbonising and effluent treatment. In W. S. Simpson & G. H. Crawshaw (Eds.), Wool (pp. 21-59): Woodhead Publishing.
  • Han, S., and Y. YANG. 2005. Antimicrobial activity of wool fabric treated with curcumin. Dyes and Pigments 64 (2):157–61. doi:10.1016/j.dyepig.2004.05.008.
  • Hasanbeigi, A., A. Hasanabadi, and M. Abdorrazaghi. 2012. Comparison analysis of energy intensity for five major sub-sectors of the textile industry in Iran. Journal of Cleaner Production 23 (1):186–94. doi:10.1016/j.jclepro.2011.10.037.
  • Hassan, M. M., and J. Z. Shao. 2015. Chemical processing of wool: sustainability considerations. Key Engineering Materials 671:32–39. doi:10.4028/scientific.net/KEM.671.32.
  • Hearle, J. W. 2007. Protein fibers: structural mechanics and future opportunities. Journal of Materials Science 42 (19):8010–19. doi:10.1007/s10853-006-1280-4.
  • Hossain, M. S., N. N. Nik Ab Rahman, V. Balakrishnan, A. F. M. Alkarkhi, Z. Ahmad Rajion, and M. O. A. Kadir. 2015. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology. Waste Management 38:462–73. doi:10.1016/j.wasman.2015.01.003.
  • Hunter, L. 2002. 6 - Mechanical processing for yarn production. In W. S. Simpson & G. H. Crawshaw (Eds.), Wool (pp. 160–214): Woodhead Publishing
  • Hurren, C., P. Cookson, and X. Wang. 2008. The effects of ultrasonic agitation in laundering on the properties of wool fabrics. Ultrasonics Sonochemistry 15 (6):1069–74. doi:10.1016/j.ultsonch.2008.04.002.
  • IWTO. 1995. Determination of Wool Base and Vegetable Matter Base of Core Samples of Raw Wool. New Zealand: Standards Association of Australia.
  • Jiang, B., J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, and Q. Xue. 2014. Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal 236:348–68. doi:10.1016/j.cej.2013.09.090.
  • Johnson., ., N. A., and I. M. Russell. 2009. Advances in Wool Technology. Cambridge, England: Woodhead Publishing Limited.
  • Jones, F. W., B. O. Bateup, D. R. Dixon, and S. R. Gray. 1997. Solubility of wool wax in supercritical carbon dioxide. The Journal of Supercritical Fluids 10 (2):105–11. doi:10.1016/S0896-8446(97)00008-9.
  • Julia, M. R., ., M. Cot, P. Erra, D. Jocic, and J. M. Canal. 1998. The use of chitosan on hydrogen peroxide pretreated wool. Textile Chemist & Colorist 30 (8):78–83.
  • Karmakar, S. R. 1999. Chemical techonology in the pre-treatment processes of textiles. In Textile Science and Technology, 1st. Amsterdam: Elsevier Science B.V. p49-68.
  • Karunditu, A. W., C. M. Carr, K. Dodd, P. Mallinson, I. A. Fleet, and L. W. Tetler. 1994. Activated hydrogen peroxide bleaching of wool. Textile Research Journal 64 (10):570–72. doi:10.1177/004051759406401003.
  • Khajavi, R., and P. A. 2007. Effects of ultrasound irradiation on wet wool chlorination treatment. Pakistan Journal of Biological Sciences 10 (16):2732–35. doi:10.3923/pjbs.2007.2732.2735.
  • Khan, S. A., A. Ahmad, M. I. Khan, M. Yusuf, M. Shahid, N. Manzoor, and F. Mohammad. 2012. Antimicrobial activity of wool yarn dyed with Rheum Emodi L. (Indian Rhubarb). Dyes and Pigments 95 (2):206–14. doi:10.1016/j.dyepig.2012.04.010.
  • Kherdekar, G., J. Udakhe, and R. V. Adivarekar. 2015. Natural eco-friendly alternatives to the existing wool scouring. Journal of Energy Research and Environmental Technology (JERET) 2:35–37.
  • Kilinc, M., S. Canbolat, N. Merdan, H. Dayioglu, and F. Akin. 2015. Investigation of the color, fastness and antimicrobial properties of wool fabrics dyed with the natural dye extracted from the cone of chamaecyparis lawsoniana. Procedia - Social and Behavioral Sciences 195:2152–59. doi:10.1016/j.sbspro.2015.06.281.
  • Kuffner, H., and C. Popescu. 2012. Woodhead publishing series in textiles. Ryszard Kozlowski In Handbook of Natural Fibres, 171–95. Cambridge: Woodhead Publishing Ltd.
  • Kunik, A., O. Semeshko, T. Asaulyuk, Y. Saribyekova, and S. Myasnykov. 2016. Development of a two-step technology of scouring wool by the method of high-energy discrete treatment. Eastern-European Journal of Enterprise Technologies 4 (10(82)):36. doi:10.15587/1729-4061.2016.76380.
  • Li, Q., C. Ding, H. Yu, C. J. Hurren, and X. Wang. 2014. Adapting ultrasonic assisted wool scouring for industrial application. Textile Research Journal 84 (11):1183–90. doi:10.1177/0040517512474365.
  • Li, Q., C. J. Hurren, C. Ding, L. Wang, T. Lin, and X. Wang. 2011. Ultrasonic scouring of wool and its effects on fibre breakage during carding. The Journal of the Textile Institute 102 (12):1059–64. doi:10.1080/00405000.2010.531951.
  • Li, Q., C. J. Hurren, and X. Wang. 2017. Ultrasonic assisted industrial wool scouring. Procedia Engineering 200:39–44. doi:10.1016/j.proeng.2017.07.007.
  • Long, -J.-J., C.-L. Cui, L. Wang, H.-M. Xu, Z.-J. Yu, and X.-P. Bi. 2013. Effect of treatment pressure on wool fiber in supercritical carbon dioxide fluid. Journal of Cleaner Production 43:52–58. doi:10.1016/j.jclepro.2013.01.002.
  • Long, L., S. Lei, and J. Guiqin. 2008. Properties of wool fibers treated under high-temperature water and steam. Journal of Applied Polymer Science 109 (2):852–58. doi:10.1002/app.28078.
  • López-Mesas, M., F. Carrillo, M. C. Gutiérrez, and M. Crespi. 2007. Alternative methods for the wool wax extraction from wool scouring wastes. Grasas Y Aceites 58 (4):4. doi:10.3989/gya.2007.v58.i4.453.
  • López-Mesas, M., J. Christoe, F. Carrillo, and M. Crespi. 2005. Supercritical fluid extraction with cosolvents of wool wax from wool scour wastes. The Journal of Supercritical Fluids 35 (3):235–39. doi:10.1016/j.supflu.2005.01.008.
  • Madara, D. S., and S. S. Namango. 2014. Wool grease recovery from scouring effluent at textile mill. Journal of Agriculture 10:1–9.
  • Marshall, R. C., I. Souren, and H. Zahn. 1983. Protein changes after short thermal treatments of wool fabrics. Textile Research Journal 53 (12):792–94. doi:10.1177/004051758305301213.
  • Marti, M., A. M. Manich, M. H. Ussman, I. Bondia, J. L. Parra, and L. Coderch. 2004. Internal lipid content and viscoelastic behavior of wool fibers. Journal of Applied Polymer Science 92 (5):3252–59. doi:10.1002/app.20363.
  • Masri, M. S. 1982. Improvements in wool scouring to conserve energy and water use in process’. Textile Research Journal 52 (1):77–81. doi:10.1177/004051758205200112.
  • Memon, H., H. Wang, and E. K. Langat. 2018. Determination and characterization of the wool fiber yield of kenyan sheep breeds: an economically sustainable practical approach for Kenya. Fibers 6 (3):55. doi:10.3390/fib6030055.
  • Millington, K. R. 2006. Photoyellowing of wool. Part 1: Factors affecting photoyellowing and experimental techniques. Coloration Technology 122 (4):169–86. doi:10.1111/j.1478-4408.2006.00034.x.
  • Millington, K. R., A. L. King, S. Hatcher, and C. Drum. 2011. Whiter wool from fleece to fabric. Coloration Technology 127 (5):297–303. doi:10.1111/j.1478-4408.2011.00312.x.
  • Millington, K. R., and G. Maurdev. 2004. The generation of superoxide and hydrogen peroxide by exposure of fluorescent whitening agents to UVA radiation and its relevance to the rapid photoyellowing of whitened wool. Journal of Photochemistry and Photobiology. A, Chemistry 165 (1–3):177–85. doi:10.1016/j.jphotochem.2004.03.017.
  • Millington, K. R., and J. A. Rippon. 2017. Wool as a high-performance fiber. Ed. Gajanan Bhat In Structure and Properties of High-Performance Fibers, 367–408. Elsevier, Netherlands.
  • Mishra, A. 2018. Woolen carpet industry: environmental impact and recent remediation approaches. eds S. ul-Islam and B. Butola In Advanced Textile Engineering Materials, 289–327. Wiley online Library.
  • Mohd Omar, A. K., T. L. Tengku Norsalwani, H. P. S. Abdul Khalil, H. Nagao, M. H. Zuknik, M. Sohrab Hossain, and N. A. Nik Norulaini. 2017. Waterless sterilization of oil palm fruitlets using supercritical carbon dioxide. The Journal of Supercritical Fluids 126:65–71. doi:10.1016/j.supflu.2017.02.019.
  • Moholkar, V. S., and V. A. Nierstrasz. 2003. Intensification of mass transfer in wet textile processes by power ultrasound. Autex Research Journal 3-3:129–38.
  • Moses, J. J., and L. Ammayappan. 2006. Growth of textile industry and their issues on environment with reference to wool industry. Asian Dyer 3 (2006):61–67.
  • Natarajan, S., and D. Gupta. 2018. Launderometer based test method for determining shrinkage of wool. The Journal of the Textile Institute 109 (9):1224–31. doi:10.1080/00405000.2017.1422962.
  • Negri, A. P., H. J. Cornell, and D. E. Rivett. 1993. A model for the surface of keratin fibers. Textile Research Journal 63 (2):109–15. doi:10.1177/004051759306300207.
  • Niu, M., X. Liu, J. Dai, W. Hou, L. Wei, and B. Xu. 2012. Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 86:289–93. doi:10.1016/j.saa.2011.10.038.
  • Padaki, N. V., B. Das, S. V. Naik, and S. A. Hipparagi. 2019. Preparatory chemical processes and recent developments. In Fibres to Smart Textiles, 153–67. CRC Press
  • Pan, Y., C. J. Hurren, and Q. Li. 2018. Effect of sonochemical scouring on the surface morphologies, mechanical properties, and dyeing abilities of wool fibres. Ultrasonics Sonochemistry 41:227–33. doi:10.1016/j.ultsonch.2017.09.045.
  • Rahman, M., and M. G. Nur. 2014. Feasible application of modern eco-friendly treatment of wool fabric before coloration. International Journal of Scientific and Research Publications 4 (7):1–7.
  • Road, K. 2017. Effect of wool scouring technique on wool fiber. International Journal of Recent Trends in Engineering and Research 3 (11):289–94.
  • Romanovska, T., М. Oseiko, S. Bazhay-Zhezherun, and O. Yarmolitska. 2019. Rational modes of wool scouring. Ukrainian Journal of Food Science 7 (2):307–16. doi:10.24263/2310-1008-2019-7-2-13.
  • Romanovska, T., and M. Oseiko. 2017. Aspects of wet wool cleaning. Ukrainian Journal of Food Science 5 (1):25–31. doi:10.24263/2310-1008-2017-5-1-5.
  • Saleh, W. M., M. H. Lafta, A. W. Abdulrazaq, H. N. Habib, and L. A. Naeem. 2019. Bacteriological and histopathological evaluation of infectious lymphadenitis caused by pseudomonas aeruginosa in awasi sheep. Advances in Animal and Veterinary Sciences 7 (5):5. doi:10.17582/journal.aavs/2019/7.5.378.382.
  • Sanders, D., A. Grunden, and R. R. Dunn. 2021. A review of clothing microbiology: the history of clothing and the role of microbes in textiles. Biology Letters 17 (1):20200700. doi:10.1098/rsbl.2020.0700.
  • Shahack-Gross, R. 2011. Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance. Journal of Archaeological Science 38 (2):205–18. doi:10.1016/j.jas.2010.09.019.
  • Shahidi, S., and J. Wiener. 2012. Antibacterial agents in textile industry. In De Antibacterial Agents, ed. V. Bobbarala, 387–406. InTech. London, UK
  • Shahidi, S., and J. Wiener. 2016. Radiation effects in textile materials. In Radiation Effects in Materials, IntechOpen, London, UK. 09–28.
  • Sharma, A., R. Tewari, S. S. Rana, R. Soni, and S. K. Soni. 2016. cellulases: classification, methods of determination and industrial applications. Applied Biochemistry and Biotechnology 179 (8):1346–80. doi:10.1007/s12010-016-2070-3.
  • Shishlina, N. I., O. V. Orfinskaya, and V. P. Golikov. 2003. bronze age textiles from the north caucasus: new evidence of fourth millennium BC fibres and fabrics. Oxford Journal of Archaeology 22 (4):331–44. doi:10.1046/j.1468-0092.2003.00191.x.
  • Vajnhandl, S., A. Majcen, and L. Marechal. 2005. Ultrasound in textile dyeing and the decolouration/mineralization of textile dyes. Dyes and Pigments 65 (2):89–101. doi:10.1016/j.dyepig.2004.06.012.
  • Valverde, A., J. Alvarez-Florez, and F. Recasens. 2020. Mathematical modelling of supercritical fluid extraction of liquid lanoline from raw wool. solubility and mass transfer rate parameters. Chemical Engineering Research & Design 164:352–60. doi:10.1016/j.cherd.2020.10.013.
  • Vltavská, P., V. Kašpárková, R. Janiš, and L. Buňková. 2012. Antifungal and antibacterial effects of 1-monocaprylin on textile materials. European Journal of Lipid Science and Technology 114 (7):849–56. doi:10.1002/ejlt.201100229.
  • Wang, L. L., X. M. Ding, and X. Y. Wu. 2015. The water footprint of wool scouring. Key Engineering Materials 671:65–70. doi:10.4028/scientific.net/KEM.671.65.
  • Wang, X., G. Cao, and W. Xu. 2009. Improving the hydrophilic properties of wool fabrics via corona discharge and hydrogen peroxide treatment. Journal of Applied Polymer Science 112 (4):1959–66. doi:10.1002/app.29573.
  • Wang, X., X. Shen, and W. Xu. 2012. Effect of hydrogen peroxide treatment on the properties of wool fabric. Applied Surface Science 258 (24):10012–16. doi:10.1016/j.apsusc.2012.06.065.
  • Xueliang, X. 2020. Animal fibers: wool. In Handbook of Fibrous Materials, Wiley Online Library: 37–74.
  • Yilmazer, D., and M. Kanik. 2009. Bleaching of wool with sodium borohydride. Journal of Engineered Fibers and Fabrics 4 (3):155892500900400. doi:10.1177/155892500900400305.
  • Yusuf, M., A. Ahmad, M. Shahid, M. I. Khan, S. A. Khan, N. Manzoor, and F. Mohammad. 2012. Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsonia Inermis). Journal of Cleaner Production 27:42–50. doi:10.1016/j.jclepro.2012.01.005.
  • Zakaria El-Sayed, H. E.-D., S. Mowafi, A. Abou El-Kheir, and E. Elkhatib. 2018. A comprehensive critique on wool grease extraction, properties and applications. Egyptian Journal of Chemistry 61 (6):840–50. doi:10.21608/ejchem.2018.4214.1372.
  • Zhang, H., R. J. Sun, and X. T. Zhang. 2014. Effect of hydrothermal processing on the structure and properties of wool fibers. Industria Textila 65 (3):123.
  • Zhang, Y., G. Pang, Y. Zhao, X. Wang, F. Bu, and X. Zhao. 2016. Pulsed electrohydraulic discharge for wool fiber cleaning. Journal of Cleaner Production 112:1033–39. doi:10.1016/j.jclepro.2015.08.023.
  • Zheng, L.-J., -P.-P. Yin, F. Ye, W. Ju, and J. Yan. 2015. Effect of pressure of supercritical carbon dioxide on morphology of wool fibers during dyeing process. Thermal Science 19 (4):1297–300. doi:10.2298/TSCI1504297Z.
  • Zheng, Y.-B., J.-X. Jia, W. Shi, and -J.-J. Long. 2021. A sustainable one-step pretreatment of cotton gray fabric with 18-crown-6 as phase transfer in supercritical carbon dioxide. The Journal of Supercritical Fluids 175:105269. doi:10.1016/j.supflu.2021.105269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.