290
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Natural Cellulosic Fiber from Cocos nucifera Peduncle for Sustainable Biocomposites

, ORCID Icon, , , ORCID Icon, & show all

References

  • Azwa, Z. N., B. F. Yousif, A. C. Manalo, and W. Karunasena. 2013. A review on the degradability of polymeric composites based on natural fibres. Materials & Design 47:424–42. doi:10.1016/j.matdes.2012.11.025.
  • Binoj, J. S., and J. S. Bibin. 2019. Failure analysis of discarded Agave Tequilana fiber polymer composites. Engineering Failure Analysis 95:379–91. doi:10.1016/j.engfailanal.2018.09.019.
  • Binoj, J. S., R. Edwin Raj, and B. S. S. Daniel. 2017. Comprehensive characterization of industrially discarded fruit fiber, Tamarindus indica L. as a potential eco-friendly bio-reinforcement for polymer composite. Journal of Cleaner Production 142:1321–31. doi:10.1016/j.jclepro.2016.09.179.
  • Binoj, J. S., R. Edwin Raj, B. S. S. Daniel, and S. S. Saravanakumar. 2016a. Optimization of short Indian Areca fruit husk fiber (Areca catechu L.)–reinforced polymer composites for maximizing mechanical properties. International Journal of Polymer Analysis and Characterization 21 (2):112–22. doi:10.1080/1023666X.2016.1110765.
  • Binoj, J. S., R. Edwin Raj, and S. Indran. 2018. Characterization of industrial discarded fruit wastes (Tamarindus Indica L.) as potential alternate for man-made vitreous fiber in polymer composites. Process Safety and Environmental Protection 116:527–34. doi:10.1016/j.psep.2018.02.019.
  • Binoj, J. S., R. Edwin Raj, V. S. Sreenivasan, and G. Rexin Thusnavis. 2016. Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian Areca Fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. Journal of Bionic Engineering 13 (1):156–65. doi:10.1016/S1672-6529(14)60170-0.
  • Boopathi, L., P. S. Sampath, and K. Mylsamy. 2012. Investigation of physical, chemical and mechanical properties of raw and alkali treated borassus fruit fiber. Composites Part B: Engineering 43 (8):3044–52. doi:10.1016/j.compositesb.2012.05.002.
  • Chakrabarty, J., M. M. Hassan, and M. A. Khan. 2012. Effect of surface treatment on betel nut (areca catechu) fiber in polypropylene composite. Journal of Polymers and the Environment 20 (2):501–06. doi:10.1007/s10924-011-0405-2.
  • Dittenber, D. B., and H. V. S. Ganga Rao. 2012. Critical review of recent publications on use of natural composites in infrastructure. Composites. Part A, Applied Science and Manufacturing 43 (8):1419–29. doi:10.1016/j.compositesa.2011.11.019.
  • Fornasieri, M., J. W. Alves, E. C. Muniz, A. Ruvolo-Filho, H. Otaguro, A. F. Rubira, and G. M. D. Carvalho. 2011. Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet. Composites. Part A, Applied Science and Manufacturing 42 (2):189–95. doi:10.1016/j.compositesa.2010.11.004.
  • Indran, S., R. Edwin Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymers 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • Kathirselvam, M., A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar. 2019. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydrate Polymers 217:178–89. doi:10.1016/j.carbpol.2019.04.063.
  • Kidalova, L., N. Stevulova, E. Terpakova, and A. Sicakova. 2012. Utilization of alternative materials in lightweight composites. Journal of Cleaner Production 34:116–19. doi:10.1016/j.jclepro.2012.01.031.
  • Ku, H., H. Wang, N. Pattarachaiyakoop, and M. Trada. 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering 42 (4):856–73. doi:10.1016/j.compositesb.2011.01.010.
  • Liu, Y., X. Lv, J. Bao, J. Xie, X. Tang, J. Che, Y. Ma, and J. Tong. 2019. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydrate Polymers 218:179–87. doi:10.1016/j.carbpol.2019.04.088.
  • Manimaran, P., S. P. Saravanan, M. R. Sanjay, S. Suchart, M. Jawaid, and A. Khan. 2019. Characterization of new cellulosic fiber: Dracaenare flexaas reinforcement for polymer composite structures. Journal of Materials Research and Technology 8 (2):952–1963. doi:10.1016/j.jmrt.2018.12.015.
  • Nagarajan, K. J., A. N. Balaji, N. R. Ramanujam, and S. Thanga Kasi Rajan. 2019. Preparation and characterization of alkali treated cocos nucifera var aurantiaca peduncle fibers reinforced epoxy composites. Materials Research Express 6 (12):1–35. doi:10.1088/2053-1591/ab54ff.
  • Naguleswaran, S., T. Vasanthan, R. Hoover, and Q. Liu. 2010. Structure and physicochemical properties of palmyrah (Borassus flabellifer L.) seed-shoot starch grown in Sri Lanka. Food Chemistry 118 (3):634–40. doi:10.1016/j.foodchem.2009.05.046.
  • Obi Reddy, K., G. Sivamohan Reddy, C. Uma Maheswari, A. VaradaRajulu, and K. Madhusudhana Rao. 2010. Structural characterization of coconut tree leaf sheath fiber reinforcement. Journal of Forestry Research 21 (1):53–58. doi:10.1007/s11676-010-0008-0.
  • Rao, S. S., S. G. Jeyapal, and S. Rajiv. 2014. Biodegradable electrospun nanocomposite fibers based on Poly(2-hydroxy ethyl methacrylate) and bamboo cellulose. Composites Part B: Engineering 60:43–48. doi:10.1016/j.compositesb.2013.12.068.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from prosopis juliflora bark. Carbohydrate Polymers 92 (2):1928–33. doi:10.1016/j.carbpol.2012.11.064.
  • Senthamaraikannan, P., S. S. Saravanakumar, M. R. Sanjay, M. Jawaid, and S. Siengchin. 2019. Physico-chemical and thermal Properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement. Materials Letters 240:221–24. doi:10.1016/j.matlet.2019.01.024.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation. Materials & Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Uma Maheswari, C., K. Obi Reddy, E. Muzenda, B. R. Guduri, and A. Varada Rajulu. 2012. Extraction and characterization of cellulose microfibrils from agricultural residue-Cocos Nucifera L. Biomass & Bioenergy 46:555–63. doi:10.1016/j.biombioe.2012.06.039.
  • Yusriah, L., S. M. Sapuan, E. S. Zainudin, and M. Mariatti. 2014. Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. Journal of Cleaner Production 72:174–80. doi:10.1016/j.jclepro.2014.02.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.