227
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Thiol-Based Ionic Liquid: An Efficient Approach for Improving Hydrophilic Performance of Wool

, , , , , & show all

References

  • Allafi, F., M. S. Hossain, J. Lalung, M. Shaah, A. Salehabadi, M. I. Ahmad, and A. Shadi. 2020. Advancements in applications of natural wool fiber: review. Journal of Natural Fibers 1–16. doi:10.1080/15440478.2020.1745128.
  • Allam, O., N. Elshemy, and H. El-Sayed. 2020. Simple and easily applicable method for reducing freshwater consumption in dyeing of wool fabric. Journal of Natural Fibers 1–10. doi:10.1080/15440478.2020.1764439.
  • Alzaga, R., E. Pascual, P. Erra, and J. M. Bayona. 1999. Development of a novel supercritical fluid extraction procedure for lanolin extraction from raw wool. Analytica Chimica Acta 381 (1):39–48. doi:10.1016/S0003-2670(98)00712-0.
  • An, F. F., K. J. Fang, X. M. Liu, H. Z. Yang, and Q. Ge. 2020. Protease and sodium alginate combined treatment of wool fabric for enhancing inkjet printing performance of reactive dyes. International Journal of Biological Macromolecules 146:959–64. doi:10.1016/j.ijbiomac.2019.09.220.
  • Asquith, R. S., K. L. Gardner, W. S. McGarel, and M. S. Otterburn. 1978. Hercosett-57 resin deposition on wool and modified wools. Journal of Applied Polymer Science 22 (11):3267–75. doi:10.1002/app.1978.070221120.
  • Bahi, A., J. T. Jones, C. M. Carr, R. V. Ulijn, and J. Z. Shao. 2007. Surface characterization of chemically modified wool. Textile Research Journal 77 (12):937–45. doi:10.1177/0040517507083520.
  • Cai, J. F., H. Jiang, W. G. Chen, and Z. H. Cui. 2020. Design, synthesis, characterization of water-soluble indophenine dyes and their application for dyeing of wool, silk and nylon fabrics. Dyes and Pigments 179:108385. doi:10.1016/j.dyepig.2020.108385.
  • Cannalire, R., M. Tiecco, V. Cecchetti, R. Germani, and G. Manfroni. 2018. Advantageous use of ionic liquids for the synthesis of pharmaceutically relevant quinolones. European Journal of Organic Chemistry 2018 (23):2977–83. doi:10.1002/ejoc.201800415.
  • Cardamone, J. M. 2010. Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). Journal of Molecular Structure 969 (1–3):97–105. doi:10.1016/j.molstruc.2010.01.048.
  • El-Kheir, A. A., K. Haggag, S. I. Mowafi, and H. El-Sayed. 2014. Microwave-assisted bleaching of wool fabrics. Journal of Natural Fibers 12 (2):97–107. doi:10.1080/15440478.2014.901202.
  • Hassabo, A. G., M. Salama, A. L. Mohamed, and C. Popescu. 2015. Ultrafine wool and cotton powder and their characteristics. Journal of Natural Fibers 12 (2):141–53. doi:10.1080/15440478.2014.903819.
  • Hassan, M. M., and C. M. Carr. 2019. A review of the sustainable methods in imparting shrink resistance to wool fabrics. Journal of Advanced Research 18:39–60. doi:10.1016/j.jare.2019.01.014.
  • Huang, W., A. Zaheri, W. Yang, D. Kisailus, R. O. Ritchie, H. Espinosa, and J. McKittrick. 2019. How water can affect keratin: Hydration-driven recovery of Bighorn sheep (Ovis Canadensis) horns. Advanced Functional Materials 29 (27):1901077. doi:10.1002/adfm.201901077.
  • Idris, A., R. Vijayaraghavan, U. A. Rana, A. F. Patti, and D. R. Macfarlane. 2014. Dissolution and regeneration of wool keratin in ionic liquids. Green Chemistry 16 (5):2857–64. doi:10.1039/C4GC00213J.
  • Kaur, A., and J. N. Chakraborty. 2015. Controlled eco-friendly shrink-resist finishing of wool using bromelain. Journal of Cleaner Production 108:503–13. doi:10.1016/j.jclepro.2015.07.147.
  • Kaur, A., J. N. Chakraborty, and K. K. Dubey. 2016. Enzymatic functionalization of wool for felting shrink-resistance. Journal of Natural Fibers 13 (4):437–50. doi:10.1080/15440478.2015.1043686.
  • Lenting, H. B. M., M. Schroeder, G. M. Guebitz, A. Cavaco-Paulo, and J. S. Shen. 2006. New enzyme-based process direction to prevent wool shrinking without substantial tensile strength loss. Biotechnology Letters 28 (10):711–16. doi:10.1007/s10529-006-9048-0.
  • Ma, B., X. Qiao, X. L. Hou, and Y. Q. Yang. 2016. Pure keratin membrane and fibers from chicken feather. International Journal of Biological Macromolecules 89:614–21. doi:10.1016/j.ijbiomac.2016.04.039.
  • Mei, J. X., N. Zhang, Y. Y. Yu, Q. Wang, J. G. Yuan, P. Wang, L. Cui, and X. R. Fan. 2018. A novel “trifunctional protease” with reducibility, hydrolysis, and localization used for wool anti-felting treatment. Applied Microbiology and Biotechnology 102 (21):9159–70. doi:10.1007/s00253-018-9276-y.
  • Mojsov, K. 2016. Enzymatic treatment of wool fabrics-opportunity of the improvement on some physical and chemical properties of the fabrics. The Journal of the Textile Institute 108:1136–43. doi:10.1080/00405000.2016.1222856.
  • Motaghi, Z., S. Eskandarnejad, and M. Montazer. 2014. The influence of the coarse wool treatment on fiber structure and physico-mechanical parameters. Journal of Natural Fibers 11 (1):1–12. doi:10.1080/15440478.2013.824850.
  • Park, M., H. Y. Kim, F. L. Jin, S. Y. Lee, H. S. Choi, and S. J. Park. 2014. Combined effect of Corona discharge and enzymatic treatment on the mechanical and surface properties of wool. Journal of Industrial and Engineering Chemistry 20 (1):179–83. doi:10.1016/j.jiec.2013.04.010.
  • Patil, N. V., and A. N. Netravali. 2019. Enhancing strength of wool fiber using a soy flour sugar-based “green” cross-linker. ACS Omega 4 (3):5392–401. doi:10.1021/acsomega.9b00055.
  • Porubská, M., Z. Hanzlíková, J. Braniša, A. Kleinová, P. Hybler, M. Fülöp, J. Ondruška, and K. Jomová. 2015. The effect of electron beam on sheep wool. Polymer Degradation and Stability 111:151–58. doi:10.1016/j.polymdegradstab.2014.11.009.
  • Rajabinejad, H., M. Zoccola, A. Patrucco, A. Montarsolo, G. Rovero, and C. Tonin. 2018. Physicochemical properties of keratin extracted from wool by various methods. Textile Research Journal 88 (21):2415–24. doi:10.1177/0040517517723028.
  • Ruzgar, D. G., S. A. Kurtoglu, and S. K. Bhullar. 2020. A study on extraction and characterization of keratin films and nanofibers from waste wool fiber. Journal of Natural Fibers 17 (3):427–36. doi:10.1080/15440478.2018.1500335.
  • Saleem, M. A., L. J. Pei, M. F. Saleem, S. Sumaira, and J. P. Wang. 2020. Sustainable dyeing of nylon with disperse dyes in Decamethylcyclopentasiloxane waterless dyeing system. Journal of Cleaner Production 276:123258. doi:10.1016/j.jclepro.2020.123258.
  • Shamshina, J. L., and P. Berton. 2020. Use of ionic liquids in chitin biorefinery: A systematic review. Frontiers in Bioengineering and Biotechnology 8 (8):11. doi:10.3389/fbioe.2020.00011.
  • Shavandi, A., A. Carne, A. A. Bekhit, A. El-Din, and A. Bekhit. 2017. An improved method for solubilisation of wool keratin using peracetic acid. Journal of Environmental Chemical Engineering 5 (2):1977–84. doi:10.1016/j.jece.2017.03.043.
  • Shen, J. S., M. Rushforth, A. Cavaco-Paulo, G. Guebitz, and H. Lenting. 2007. Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability. Enzyme and Microbial Technology 40 (7):1656–61. doi:10.1016/j.enzmictec.2006.07.034.
  • Sun, J., H. Y. Wang, C. L. Zheng, and G. W. Wang. 2019. Synthesis of some surfactant-type acid dyes and their low-temperature dyeing properties on wool fiber. Journal of Cleaner Production 218:284–93. doi:10.1016/j.jclepro.2019.01.341.
  • Tonin, C., G. Roncolato, R. Innocento, and F. Ferrero. 2007. Process optimization and industrial scale-up of chitosan based anti-felting treatments of wool. Journal of Natural Fibers 4 (2):77–90. doi:10.1300/J395v04n02_06.
  • Wang, P., Q. Wang, X. R. Fan, L. Cui, J. G. Yuan, S. Chen, and J. Wu. 2009. Effects of cutinase on the enzymatic shrink-resist finishing of wool fabrics. Enzyme and Microbial Technology 44 (5):302–08. doi:10.1016/j.enzmictec.2009.01.007.
  • Wang, X., Y. Zhao, W. B. Li, and H. Wang. 2015. Effect of surface modifications on the thermal and moisture behavior of wool fabric. Applied Surface Science 342:101–05. doi:10.1016/j.apsusc.2015.03.027.
  • Wojciechowska, E., M. Rom, A. Włochowicz, M. Wysocki, and A. Wesełucha-Birczyńska. 2004. The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment. Journal of Molecular Structure 704 (1–3):315–21. doi:10.1016/j.molstruc.2004.03.044.
  • Xia, S. M., H. K. Chen, H. C. Fu, and L. N. He. 2018. Ionic liquids catalysis for carbon dioxide conversion with nucleophiles. Frontiers in Chemistry 6:462. doi:10.3389/fchem.2018.00462.
  • Yuan, J. G., Q. Wang, and X. R. Fan. 2010. Dyeing behaviors of ionic liquid treated wool. Journal of Applied Polymer Science 117 (4):2278–83. doi:10.1002/app.32020.
  • Zhang, N., Q. Wang, J. G. Yuan, L. Cui, P. Wang, Y. Y. Yu, and X. R. Fan. 2018. Highly efficient and eco-friendly wool degradation by L-cysteine-assisted esperase. Journal of Cleaner Production 192:433–42. doi:10.1016/j.jclepro.2018.05.008.
  • Zhang, W., J. M. Yao, P. Huang, and S. Xing. 2020. Aqueous extraction of buckwheat hull and its functional application in eco-friendly dyeing for wool fabric. Textile Research Journal 90 (5–6):641–54. doi:10.1177/0040517519877465.
  • Zhou, Z., Y. B. Di, and W. Wang. 2020. Modification of ultrafine wool with modified protease. Journal of Natural Fibers 17 (10):1423–29. doi:10.1080/15440478.2019.1576570.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.