198
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Proteomic Characterization of Bacillus Subtilis on Bio-degumming of Ramie Bast

, , , , , & show all

References

  • Aburaya, S., W. Aoki, K. Kuroda, H. Minakuchi, and M. Ueda. 2019. Temporal proteome dynamics of Clostridium cellulovorans cultured with major plant cell wall polysaccharides. BMC Microbiology 19 (1):118. doi:10.1186/s12866-019-1480-0.
  • Chen, L., and J. D. Helmann. 1995. Bacillus subtilis MrgA is a Dps(PexB) homologue: Evidence for metalloregulation of an oxidative-stress gene. Molecular Microbiology 18 (2):295–300. doi:10.1111/j.1365-2958.1995.mmi_18020295.x.
  • Cox, J., and M. Mann. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 26 (12):1367–72. doi:10.1038/nbt.1511.
  • Deshavath, N. N., G. Mukherjee, V. V. Goud, V. D. Veeranki, and C. V. Sastri. 2020. Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules 156:180–85. doi:10.1016/j.ijbiomac.2020.04.045.
  • Dietrich, K., M. J. Dumont, T. Schwinghamer, V. Orsat, and L. F. Del Rio. 2018. Model study to assess softwood hemicellulose hydrolysates as the carbon source for PHB production in Paraburkholderia sacchari IPT 101. Biomacromolecules 19 (1):188–200. doi:10.1021/acs.biomac.7b01446.
  • Elinger, D., A. Gabashvili, and Y. Levin. 2019. Suspension trapping (S-Trap) is compatible with typical protein extraction buffers and detergents for bottom-up proteomics. Journal of Proteome Research 18 (3):1441–45. doi:10.1021/acs.jproteome.8b00891.
  • Fillinger, S., S. Boschi-Muller, S. Azza, E. Dervyn, G. Branlant, and S. Aymerich. 2000. Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. Journal of Biological Chemistry 275 (19):14031–37. doi:10.1074/jbc.275.19.14031.
  • Fujihashi, M., T. Nakatani, K. Hirooka, H. Matsuoka, Y. Fujita, and K. Miki. 2014. Structural characterization of a ligand-bound form of Bacillus subtilis FadR involved in the regulation of fatty acid degradation. Proteins: Structure, Function, and Bioinformatics 82 (7):1301–10. doi:10.1002/prot.24496.
  • Fukuda, M., S. Watanabe, S. Yoshida, H. Itoh, Y. Itoh, Y. Kamio, and J. Kaneko. 2010. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. Journal of Bacteriology 192 (8):2210–19. doi:10.1128/JB.01406-09.
  • Gajdiss, M., I. R. Monk, U. Bertsche, J. Kienemund, T. Funk, A. Dietrich, M. Hort, E. Sib, T. P. Stinear, and G. Bierbaum. 2020. YycH and YycI regulate expression of Staphylococcus aureus autolysins by activation of WalRK phosphorylation. Microorganisms 8 (6):6. doi:10.3390/microorganisms8060870.
  • Gallo, G., F. Baldi, G. Renzone, M. Gallo, A. Cordaro, A. Scaloni, and A. M. Puglia. 2012. Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation. Microbial Cell Factories 11 (1):152. doi:10.1186/1475-2859-11-152.
  • Gerth, U., E. Krieger, D. Zuhlke, A. Reder, U. Volker, M. Hecker, and A. Becker. 2017. Stability of proteins out of service: The GapB case of Bacillus subtilis. Journal of Bacteriology 199 (20):20. doi:10.1128/JB.00148-17.
  • Grundy, F. J., A. J. Turinsky, and T. M. Henkin. 1994. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. Journal of Bacteriology 176 (15):4527–33. doi:10.1128/jb.176.15.4527-4533.1994.
  • Grundy, F. J., D. A. Waters, T. Y. Takova, and T. M. Henkin. 1993. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Molecular Microbiology 10 (2):259–71. doi:10.1111/j.1365-2958.1993.tb01952.x.
  • Guaman, L. P., E. R. Oliveira-Filho, C. Barba-Ostria, J. G. C. Gomez, M. K. Taciro, and L. F. Da Silva. 2018. xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari. Journal of Industrial Microbiology and Biotechnology 45 (3):165–73. doi:10.1007/s10295-018-2007-7.
  • Guan, Y., D. Wang, C. Lv, Y. Zhang, I. Gelbic, and X. Ye. 2020. Archives of microbiology: Screening of pectinase-producing bacteria from citrus peel and characterization of a recombinant pectate lyase with applied potential. Archives of Microbiology 202 (5):1005–13. doi:10.1007/s00203-020-01807-0.
  • Handtke, S., D. Albrecht, A. Otto, D. Becher, M. Hecker, and B. Voigt. 2018. The proteomic response of Bacillus pumilus cells to glucose starvation. Proteomics 18 (1):1. doi:10.1002/pmic.201700109.
  • Hatada, Y., K. Saito, K. Koike, T. Yoshimatsu, T. Ozawa, T. Kobayashi, and S. Ito. 2000. Deduced amino-acid sequence and possible catalytic residues of a novel pectate lyase from an alkaliphilic strain of Bacillus. European Journal of Biochemistry 267 (8):2268–75. doi:10.1046/j.1432-1327.2000.01243.x.
  • Hirschfeld, C., A. Gomez-Mejia, J. Bartel, C. Hentschker, M. Rohde, S. Maass, S. Hammerschmidt, and D. Becher. 2019. Proteomic investigation uncovers potential targets and target sites of pneumococcal serine-threonine kinase StkP and phosphatase PhpP. Frontiers in Microbiology 10:3101. doi:10.3389/fmicb.2019.03101.
  • Hori, C., R. Song, K. Matsumoto, R. Matsumoto, B. B. Minkoff, S. Oita, H. Hara, T. E. Takasuka, and E. R. Master. 2020. Proteomic characterization of lignocellulolytic enzymes secreted by the insect-associated fungus daldinia decipiensoita, isolated from a forest in Northern Japan. Applied and Environmental Microbiology 86 (8):8. doi:10.1128/AEM.02350-19.
  • Huang, M., F. B. Oppermann-Sanio, and A. Steinbuchel. 1999. Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. Journal of Bacteriology 181 (12):3837–41. doi:10.1128/JB.181.12.3837-3841.1999.
  • Kandimalla, R., S. Kalita, B. Choudhury, D. Devi, D. Kalita, K. Kalita, S. Dash, and J. Kotoky. 2016. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial. Materials Science and Engineering: C 62:816–22. doi:10.1016/j.msec.2016.02.040.
  • Kanehisa, M., and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28 (1):27–30. doi:10.1093/nar/28.1.27.
  • Kobayashi, K., and Y. V. Brun. 2019. Inactivation of cysL inhibits biofilm formation by activating the disulfide stress regulator spx in bacillus subtilis. Journal of Bacteriology 201 (8):8. doi:10.1128/JB.00712-18.
  • Kumarevel, T., H. Mizuno, and P. K. Kumar. 2005. Structural basis of HutP-mediated anti-termination and roles of the Mg2+ ion and L-histidine ligand. Nature 434 (7030):183–91. doi:10.1038/nature03355.
  • Lee, J. Y., E. A. Pajarillo, M. J. Kim, J. P. Chae, and D. K. Kang. 2013. Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR. Journal of Proteome Research 12 (1):432–43. doi:10.1021/pr300794y.
  • Leelakriangsak, M., N. T. Huyen, S. Towe, N. van Duy, D. Becher, M. Hecker, H. Antelmann, and P. Zuber. 2008. Regulation of quinone detoxification by the thiol stress sensing DUF24/MarR-like repressor, YodB in Bacillus subtilis. Molecular Microbiology 67 (5):1108–24. doi:10.1111/j.1365-2958.2008.06110.x.
  • Lippolis, R., A. Gnoni, A. Abbrescia, D. Panelli, S. Maiorano, M. S. Paternoster, A. M. Sardanelli, S. Papa, and A. Gaballo. 2011. Comparative proteomic analysis of four Bacillus clausii strains: Proteomic expression signature distinguishes protein profile of the strains. Journal of Proteomics 74 (12):2846–55. doi:10.1016/j.jprot.2011.06.032.
  • Locher, K. P. 2016. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nature Structural & Molecular Biology 23 (6):487–93. doi:10.1038/nsmb.3216.
  • Lu, X., J. Sun, M. Nimtz, J. Wissing, A. P. Zeng, and U. Rinas. 2010. The intra- and extracellular proteome of Aspergillus Niger growing on defined medium with xylose or maltose as carbon substrate. Microbial Cell Factories 9 (1):23. doi:10.1186/1475-2859-9-23.
  • Lyratzakis, A., G. Valsamidis, I. Kanavaki, A. Nikolaki, F. Rupprecht, J. D. Langer, and G. Tsiotis. 2021. Proteomic characterization of the Pseudomonas sp. strain phDV1 response to monocyclic aromatic compounds. Proteomics 21 (2):e2000003. doi:10.1002/pmic.202000003.
  • Meyer, H., H. Weidmann, U. Mader, M. Hecker, U. Volker, and M. Lalk. 2014. A time resolved metabolomics study: The influence of different carbon sources during growth and starvation of Bacillus subtilis. Mol Biosyst 10 (7):1812–23. doi:10.1039/c4mb00112e.
  • Mokhothu, T. H., and M. J. John. 2015. Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydrate Polymers 131:337–54. doi:10.1016/j.carbpol.2015.06.027.
  • Molina, L., R. Rosa, J. Nogales, and F. Rojo. 2019. Pseudomonas putida KT2440 metabolism undergoes sequential modifications during exponential growth in a complete medium as compounds are gradually consumed. Environmental Microbiology 21 (7):2375–90. doi:10.1111/1462-2920.14622.
  • Morabbi Heravi, K., H. Watzlawick, J. Altenbuchner, and A. Becker. 2019. The melREDCA operon encodes a utilization system for the raffinose family of oligosaccharides in Bacillus subtilis. Journal of Bacteriology 201 (15):15. doi:10.1128/JB.00109-19.
  • Morabbi Heravi, K., J. Altenbuchner, and A. M. Stock. 2018. Cross talk among transporters of the phosphoenolpyruvate-dependent phosphotransferase system in Bacillus subtilis. Journal of Bacteriology 200 (19):19. doi:10.1128/JB.00213-18.
  • Munir, R. I., V. Spicer, O. V. Krokhin, D. Shamshurin, X. Zhang, M. Taillefer, W. Blunt, N. Cicek, R. Sparling, and D. B. Levin. 2016. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose. BMC Microbiology 16 (1):91. doi:10.1186/s12866-016-0711-x.
  • Novy, V., B. Brunner, G. Muller, and B. Nidetzky. 2017. Toward “homolactic” fermentation of glucose and xylose by engineered saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Biotechnology and Bioengineering 114 (1):163–71. doi:10.1002/bit.26048.
  • Ogura, M., and T. Tanaka. 2002. Recent progress in Bacillus subtilis two-component regulation. Frontiers in Bioscience 7 (1–3):d1815–24. doi:10.2741/ogura.
  • Park, S. Y., S. K. Choi, J. Kim, T. K. Oh, and S. H. Park. 2012. Efficient production of polymyxin in the surrogate host bacillus subtilis by introducing a foreign ectB gene and disrupting the abrB Gene. Applied and Environmental Microbiology 78 (12):4194–99. doi:10.1128/AEM.07912-11.
  • Peng, Q., X. Zhao, J. Wen, M. Huang, J. Zhang, and F. Song. 2020. Transcription in the acetoin catabolic pathway is regulated by AcoR and CcpA in Bacillus thuringiensis. Microbiological Research 235:126438. doi:10.1016/j.micres.2020.126438.
  • Pujic, P., R. Dervyn, A. Sorokin, and S. D. Ehrlich. 1998. The kdgRKAT operon of Bacillus subtilis: Detection of the transcript and regulation by the kdgR and ccpA genes. Microbiology (Reading) 144 (Pt 11):3111–18. doi:10.1099/00221287-144-11-3111.
  • Raethong, N., K. Laoteng, and W. Vongsangnak. 2018. Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis. Scientific Reports 8 (1):9250. doi:10.1038/s41598-018-27534-7.
  • Ray Chaudhuri, S., M. Gogoi, T. Biswas, S. Chatterjee, C. Chanda, R. Jamatia, A. Modak, S. K. Sett, and I. Mukherjee. 2020. Optimization of bio-chemical degumming of ramie fiber for improved strength & luster. Biotechnology Reports 28:e00532. doi:10.1016/j.btre.2020.e00532.
  • Rezacova, P., M. Kozisek, S. F. Moy, I. Sieglova, A. Joachimiak, M. Machius, and Z. Otwinowski. 2008. Crystal structures of the effector-binding domain of repressor central glycolytic gene regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates. Molecular Microbiology 69 (4):895–910. doi:10.1111/j.1365-2958.2008.06318.x.
  • Sadaie, Y., H. Nakadate, R. Fukui, L. M. Yee, and K. Asai. 2008. Glucomannan utilization operon of Bacillus subtilis. FEMS Microbiology Letters 279 (1):103–09. doi:10.1111/j.1574-6968.2007.01018.x.
  • Sechovcova, H., L. Kulhava, K. Fliegerova, M. Trundova, D. Morais, J. Mrazek, and J. Kopecny. 2019. Comparison of enzymatic activities and proteomic profiles of Butyrivibrio fibrisolvens grown on different carbon sources. Proteome Science 17 (1):2. doi:10.1186/s12953-019-0150-3.
  • Shah, A. D., R. J. A. Goode, C. Huang, D. R. Powell, and R. B. Schittenhelm. 2020. LFQ-Analyst: an easy-to-use interactive web platform to analyze and visualize label-free proteomics data preprocessed with MaxQuant. Journal of Proteome Research 19 (1):204–11. doi:10.1021/acs.jproteome.9b00496.
  • Shemesh, M., A. Tam, M. Feldman, and D. Steinberg. 2006. Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydrate Research 341 (12):2090–97. doi:10.1016/j.carres.2006.05.010.
  • Soriano, M., P. Diaz, and F. I. J. Pastor. 2006. Pectate lyase C from Bacillus subtilis: A novel endo-cleaving enzyme with activity on highly methylated pectin. Microbiology (Reading) 152 (3):617–25. doi:10.1099/mic.0.28562-0.
  • Stead, C. A., S. J. Hesketh, S. Bennett, H. Sutherland, J. C. Jarvis, P. J. Lisboa, and J. G. Burniston. 2020. Fractional synthesis rates of individual proteins in rat soleus and plantaris muscles. Proteomes 8 (2):2. doi:10.3390/proteomes8020010.
  • Takada, H., and H. Yoshikawa. 2018. Essentiality and function of WalK/WalR two-component system: The past, present, and future of research. Bioscience, Biotechnology, and Biochemistry 82 (5):741–51. doi:10.1080/09168451.2018.1444466.
  • Tannler, S., E. Fischer, D. Le Coq, T. Doan, E. Jamet, U. Sauer, and S. Aymerich. 2008. CcpN controls central carbon fluxes in Bacillus subtilis. Journal of Bacteriology 190 (18):6178–87. doi:10.1128/JB.00552-08.
  • Thomson, C. M., M. S. Alphey, G. Fisher, and R. G. Da Silva. 2019. Mapping the structural path for allosteric inhibition of a short-form ATP phosphoribosyltransferase by histidine. Biochemistry 58 (28):3078–86. doi:10.1021/acs.biochem.9b00282.
  • Tobisch, S., J. Stulke, and M. Hecker. 1999. Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. Journal of Bacteriology 181 (16):4995–5003. doi:10.1128/JB.181.16.4995-5003.1999.
  • Towe, S., M. Leelakriangsak, K. Kobayashi, N. Van Duy, M. Hecker, P. Zuber, and H. Antelmann. 2007. The MarR-type repressor MhqR (YkvE) regulates multiple dioxygenases/glyoxalases and an azoreductase which confer resistance to 2-methylhydroquinone and catechol in Bacillus subtilis. Molecular Microbiology 66 (1):40–54. doi:10.1111/j.1365-2958.2007.05891.x.
  • Tyanova, S., T. Temu, and J. Cox. 2016. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols 11 (12):2301–19. doi:10.1038/nprot.2016.136.
  • Verdugo-Fuentes, A., G. Gastelum, J. Rocha, M. de La Torre, and W. Margolin. 2020. Multiple and overlapping functions of quorum sensing proteins for cell specialization in Bacillus species. Journal of Bacteriology 202 (10):10. doi:10.1128/JB.00721-19.
  • Walker, J. M. 1994. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol 32:5–8. doi:10.1385/0-89603-268-X:5.
  • Wang, C., H. Cai, Z. Zhou, K. Zhang, Z. Chen, Y. Chen, H. Wan, and P. Ouyang. 2014. Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum. Journal of Industrial Microbiology and Biotechnology 41 (8):1249–58. doi:10.1007/s10295-014-1455-y.
  • Wang, J., S. Liu, Y. Li, H. Wang, S. Xiao, C. Li, and B. Liu. 2018a. Central carbon metabolism influences cellulase production in Bacillus licheniformis. Letters in Applied Microbiology 66 (1):49–54. doi:10.1111/lam.12813.
  • Wang, Y. W., Y. Bai, T. Shu, P. Fan, H. S. Zhang, O. Turunen, H. R. Xiong, and L. J. Yu. 2020. Characterization of a versatile glycoside hydrolase Cel5M from Pectobacterium carotovorum HG-49 for ramie degumming. Textile Research Journal 90 (13–14):1602–15. doi:10.1177/0040517519894748.
  • Wang, Z., J. Sun, T. Xia, Y. Liu, J. Fu, Y. K. Lo, C. Chang, A. Yan, and X. Liu. 2018b. Proteomic delineation of the ArcA regulon in Salmonella typhimurium during anaerobiosis. Molecular & Cellular Proteomics 17 (10):1937–47. doi:10.1074/mcp.RA117.000563.
  • Yamamoto, H., M. Murata, and J. Sekiguchi. 2000. The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis. Molecular Microbiology 37 (4):898–912. doi:10.1046/j.1365-2958.2000.02055.x.
  • Yang, Q., L. F. Cheng, X. Y. Feng, K. Zheng, Z. Y. Liu, S. W. Duan, and Y. D. Peng. 2021. Analysis of the relationship between enzymatic activity and microbial degumming effect of kenaf bast. Journal of Natural Fibers 18 (9):1217–28. doi:10.1080/15440478.2019.1688750
  • Yang, Q., S. W. Duan, L. F. Cheng, X. Y. Feng, K. Zheng, C. L. Xie, Z. Y. Liu, and Y. D. Peng. 2019. Engineering of a Bacillus subtilis strain deficient in cellulase: Application in degumming of ramie. Fibers and Polymers 20 (1):57–62. doi:10.1007/s12221-019-8444-8.
  • Yang, Q., S. W. Duan, L. F. Cheng, X. Y. Feng, K. Zheng, Z. Y. Liu, M. Q. Gao, and Y. D. Peng. 2020. An effective degumming technology for ramie fibers based on microbial coculture strategy. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2020.1784819.
  • Yang, Q., X. Ding, X. Liu, S. Liu, Y. Sun, Z. Yu, S. Hu, J. Rang, H. He, L. He, and L. Xia. 2014. Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa. Microbial Cell Factories 13 (1):27. doi:10.1186/1475-2859-13-27.
  • Yang, Q., Y. Li, H. Yang, J. Rang, S. Tang, L. He, L. Li, X. Ding, and L. Xia. 2015. Proteomic insights into metabolic adaptation to deletion of metE in Saccharopolyspora spinosa. Applied Microbiology and Biotechnology 99 (20):8629–41. doi:10.1007/s00253-015-6883-8.
  • Zagorec, M., and P. W. Postma. 1992. Cloning and nucleotide sequence of the ptsG gene of Bacillus subtilis. Molecular and General Genetics MGG 234 (2):325–28. doi:10.1007/BF00283853.
  • Zhang, S. M., X. F. Li, X. Wang, Z. Li, and J. He. 2016. The two-component signal transduction system YvcPQ regulates the bacterial resistance to bacitracin in Bacillus thuringiensis. Archives of Microbiology 198 (8):773–84. doi:10.1007/s00203-016-1239-z.
  • Zhang, X. Z., N. Sathitsuksanoh, Z. Zhu, and Y. H. Percival Zhang. 2011. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metabolic Engineering 13 (4):364–72. doi:10.1016/j.ymben.2011.04.003.
  • Zou, M., X. Li, J. Zhao, and Y. Qu. 2013. Characteristics of polygalacturonate lyase C from Bacillus subtilis 7-3-3 and its synergistic action with PelA in enzymatic degumming. PLoS One 8 (11):e79357. doi:10.1371/journal.pone.0079357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.