244
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of Water Removal Techniques on the Main Characteristics of Nanofibrillated Cellulose Obtained from Different Lignocellulosic Materials

ORCID Icon, , , , , & show all
Pages 10015-10030 | Published online: 31 Oct 2021

References

  • Agarwal, U. P., A. R. Sally, B. Carlos, S. R. Richard, and P. V. Steve. 2017. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24 (5):1971–84. doi:10.1007/s10570-017-1259-0.
  • Agarwal, U. P., A. R. Sally, S. R. Richard, and C. Baez. 2018. New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydrate Polymers 190:262–70. doi:10.1016/j.carbpol.2018.03.003.
  • Ang, S., J. R. Narayanan, W. Kargupta, V. Haritos, and W. Batchelor. 2020. Cellulose nanofiber diameter distributions from microscopy image analysis: Effect of measurement statistics and operator. Cellulose 27 (8):4189–208. doi:10.1007/s10570-020-03058-0.
  • Barbash, V. A., O. V. Yashchenko, and V. O. Opolsky. 2018. Effect of hydrolysis conditions of organosolv pulp from kenaf fibers on the physicochemical properties of the obtained nanocellulose. Theoretical and Experimental Chemistry 54 (3):193–98. doi:10.1007/s11237-018-9561-y.
  • Beaumont, M., J. König, M. Opietnik, A. Potthast, and T. Rosenau. 2017. Drying of a cellulose ii gel: Effect of physical modification and redispersibility in water. Cellulose 24 (3):1199–209. doi:10.1007/s10570-016-1166-9.
  • Beck, S., J. Bouchard, and R. Berry. 2012. Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13 (5):1486–94. doi:10.1021/bm300191k.
  • Chaker, A., P. Mutjé, M. R. Vilar, and S. Boufi. 2014. Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21 (6):4247–59. doi:10.1007/s10570-014-0454-5.
  • Chinga-Carrasco, G. 2011. Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of mfc components from a plant physiology and fibre technology point of view. Celulosa Y Papel 27 (2):12–17. doi:10.1186/1556-276X-6-417.
  • Corrêa, A. C., K. B. R. Teodoro, J. A. Simão, P. I. C. Claro, E. M. Teixeira, L. H. C. Mattoso, and J. M. Marconcini. 2020. Cellulose nanocrystals from curaua fibers and poly[ethylene-co-(vinyl acetate)] nanocomposites: Effect of drying process of cncs on thermal and mechanical properties. Polymer Composites 1–13. 2018. August. doi:10.1002/pc.25493.
  • Davis, C. S., R. J. Moon, S. Ireland, L. Johnston, J. A. Shatkin, K. Nelson, E. J. Foster, 2015. “NIST-TAPPI workshop on measurement needs for cellulose nanomaterial,” no. June: 1–42. doi:10.6028/NIST.SP.1192.
  • Ding, Q., J. Zeng, B. Wang, D. Tang, K. Chen, and W. Gao. 2019. Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration. Carbohydrate Polymers 207:44–51. doi:10.1016/j.carbpol.2018.11.075.
  • Foster, E. J., R. J. Moon, U. P. Agarwal, M. J. Bortner, J. Bras, S. Camarero-Espinosa, K. J. Chan, et al. 2018. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews 47 (8):2609–79. doi:10.1039/c6cs00895j.
  • Franco, T. S., D. C. Potulski, L. C. Viana, E. Forville, and A. S. Andrade. 2019. Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydrate Polymers 218:8–19. doi:10.1016/j.carbpol.2019.04.035.
  • French, A. D., and M. S. Cintrón. 2013. Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20 (1):583–88. doi:10.1007/s10570-012-9833-y.
  • Gardner, D. J., G. S. Oporto, R. Mills, and M. A. S. A. Samir. 2008. Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology 22 (5–6):545–67. doi:10.1163/156856108X295509.
  • Gümüskaya, E., M. Usta, and H. Kirci. 2003. The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polymer Degradation and Stability 81 (3):559–64. doi:10.1016/S0141-3910(03)00157-5.
  • Hanif, Z., H. Jeon, T. H. Tran, J. Jegal, S. A. Park, S. M. Kim, J. Park, S. Y. Hwang, and D. X. Oh. 2018. Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion. Journal of Polymer Research 24:11. doi:10.1007/s10965-017-1343-z.
  • Hettegger, H., M. Beaumont, A. Potthast, and T. Rosenau. 2016. Aqueous modification of nano-and microfibrillar cellulose with a click synthon. ChemSusChem 9 (1):75–79. doi:10.1002/cssc.201501358.
  • Horikawa, Y., M. Shimizu, T. Saito, A. Isogai, T. Imai, and J. Sugiyama. 2018. Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis. International Journal of Biological Macromolecules 109:569–75. doi:10.1016/j.ijbiomac.2017.12.051.
  • Hribernik, S., K. S. Kleinschek, R. Rihm, J. Ganster, H. P. Fink, and M. S. Smole. 2016. Tuning of cellulose fibres’ structure and surface topography: Influence of swelling and various drying procedures. Carbohydrate Polymers 148:227–35. Elsevier Ltd. doi:10.1016/j.carbpol.2016.04.053.
  • Jiang, F., S. Han, and Y. Hsieh. 2013. Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Advances 3 (30):12366–75. doi:10.1039/c3ra41646a.
  • Jiang, F., and Y. Hsieh. 2014. Assembling and redispersibility of rice straw nanocellulose: Effect of tert-butanol. ACS Applied Materials & Interfaces 6 (22):20075–84. doi:10.1021/am505626a.
  • Jiang, F., and Y. L. Hsieh. 2013. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers 95(1):32–40. Elsevier Ltd. doi:10.1016/j.carbpol.2013.02.022.
  • Jozala, A. F., L. C. Lencastre-Novaes, A. M. Lopes, V. C. Santos-Ebinuma, P. G. Mazzola, A. Pessoa-Jr, D. Grotto, M. Gerenutti, and M. V. Chaud. 2016. Bacterial nanocellulose production and application: A 10-year overview. Applied Microbiology and Biotechnology 100 (5):2063–72. doi:10.1007/s00253-015-7243-4.
  • Ju, X., M. Bowden, E. E. Brown, and X. Zhang. 2015. An improved x-ray diffraction method for cellulose crystallinity measurement. Carbohydrate Polymers 123:476–81. doi:10.1016/j.carbpol.2014.12.071.
  • Karimi, K., and M. J. Taherzadeh. 2016. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology 200:1008–18. doi:10.1016/j.biortech.2015.11.022.
  • Khoshkava, V., and M. R. Kamal. 2014. Effect of drying conditions on cellulose nanocrystal (cnc) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technology 261:288–98. doi:10.1016/j.powtec.2014.04.016.
  • Klemm, D., E. D. Cranston, D. Fischer, M. Gama, S. A. Kedzior, D. Kralisch, F. Kramer, T. Kondo, T. Lindström, S. Nietzsche, K. Petzold-Welcke, F. Rauchfuß. 2018. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Materials Today 21 (7):720–48. doi:10.1016/j.mattod.2018.02.001.
  • Klemm, D., F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, and A. Dorris. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie - International Edition 50 (24):5438–66. doi:10.1002/anie.201001273.
  • Lê, H. Q., K. Dimic-Misic, L. S. Johansson, T. Maloney, and H. Sixta. 2018. Effect of lignin on the morphology and rheological properties of nanofibrillated cellulose produced from γ-valerolactone/water fractionation process. Cellulose 25 (1):179–94. doi:10.1007/s10570-017-1602-5.
  • Lei, W., C. Fang, X. Zhou, Q. Yin, S. Pan, R. Yang, D. Liu, and Y. Ouyang. 2018. Cellulose nanocrystals obtained from office waste paper and their potential application in pet packing materials. Carbohydrate Polymers 181:376–85. doi:10.1016/j.carbpol.2017.10.059.
  • Li, Y., H. Jiang, B. Han, and Y. Zhang. 2019. Drying of cellulose nanocrystal gel beads using supercritical carbon dioxide. Journal of Chemical Technology and Biotechnology 94 (5):1651–59. doi:10.1002/jctb.5936.
  • Lindström, T. 2017. Aspects on nanofibrillated cellulose (nfc) processing, rheology and nfc-film properties. Current Opinion in Colloid & Interface Science 29:68–75. doi:10.1016/j.cocis.2017.02.005.
  • Liu, Y., D. Thibodeaux, G. Gamble, P. Bauer, and D. VanDerveer. 2012. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and x-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Applied Spectroscopy 66 (8):983–86. doi:10.1366/12-06611.
  • Lupoi, J. S., S. Singh, M. Davis, D. J. Lee, M. Shepherd, B. A. Simmons, and R. J. Henry. 2014. High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: A comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development. Biotechnology for Biofuels 7 (1):1–14. doi:10.1186/1754-6834-7-93.
  • Martins, D., B. Estevinho, F. Rocha, F. Dourado, and D. Gama. 2020. A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions. Carbohydrate Polymers 230:115657. doi:10.1016/j.carbpol.2019.115657.
  • Mattonai, M., D. Pawcenis, S. Del Seppia, J. Łojewska, and E. Ribechini. 2018. Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose. Bioresource Technology 270:270–77. doi:10.1016/j.biortech.2018.09.029.
  • Mokhena, T. C., and M. J. John. 2020. Cellulose nanomaterials: New generation materials for solving global issues. Cellulose 27 (6):1149–1194. doi:10.1007/s10570-019-02889-w
  • Moon, R. J., A. Martini, J. Nairn, J. Simonsen, and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40 (7):3941–94. doi:10.1039/c0cs00108b.
  • Moriana, R., F. Vilaplana, and M. Ek. 2016. Cellulose nanocrystals from forest residues as reinforcing agents for composites: A study from macro- to nano-dimensions. Carbohydrate Polymers 139:139–49. doi:10.1016/j.carbpol.2015.12.020.
  • Parikh, D. V., D. P. Thibodeaux, and B. Condon. 2007. X-ray crystallinity of bleached and crosslinked cottons. Textile Research Journal 77 (8):612–16. doi:10.1177/0040517507081982.
  • Park, C., S. Han, H. Namgung, P. Seo, and S. Lee. 2017. Effect of spray-drying condition and surfactant addition on morphological characteristics of spray-dried nanocellulose. Journal of Forest and Environmental Science 33 (1):33–38. doi:10.7747/jfes.2017.33.1.33.
  • Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3 (1):1–10. doi:10.1186/1754-6834-3-10.
  • Peng, Y., D. J. Gardner, and Y. Han. 2012. Drying cellulose nanofibrils: In search of a suitable method. Cellulose 19 (1):91–102. doi:10.1007/s10570-011-9630-z.
  • Peng, Y., D. J. Gardner, Y. Han, A. Kiziltas, Z. Cai, and M. A. Tshabalala. 2013. Influence of drying method on the material properties of nanocellulose i: Thermostability and crystallinity. Cellulose 20 (5):2379–92. doi:10.1007/s10570-013-0019-z.
  • Peng, Y., Y. Han, and D. J. Gardner. 2012. Spray-drying cellulose nanofibrils : Effect of drying process parameters on particle morphology. Wood and Fiber Science 44 (4):1–14.
  • Pitkänen, M., H. Kangas, O. Laitinen, A. Sneck, P. Lahtinen, M. S. Peresin, and J. Niinimäki. 2014. Characteristics and safety of nano-sized cellulose fibrils. Cellulose 21 (6):3871–86. doi:10.1007/s10570-014-0397-x.
  • Quiévy, N., N. Jacquet, M. Sclavons, C. Deroanne, M. Paquot, and J. Devaux. 2010. Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polymer Degradation and Stability 95 (3):306–14. doi:10.1016/j.polymdegradstab.2009.11.020.
  • Sacui, I. A., R. C. Nieuwendaal, D. J. Burnett, S. J. Stranick, M. Jorfi, C. Weder, E. J. Foster, R. T. Olsson, and J. W. Gilman. 2014. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Applied Materials & Interfaces 6 (9):6127–38. doi:10.1021/am500359f.
  • Sehaqui, H., N. E. Mushi, S. Morimune, M. Salajkova, T. Nishino, and L. A. Berglund. 2012. Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Applied Materials & Interfaces 4 (2):1043–49. doi:10.1021/am2016766.
  • Solala, I., M. C. Iglesias, and M. S. Peresin. 2020. On the potential of lignin-containing cellulose nanofibrils (lcnfs): A review on properties and applications. Cellulose 27 (4):1853–77. doi:10.1007/s10570-019-02899-8.
  • Traoré, M., J. Kaal, and A. M. Cortizas. 2016. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 153:63–70. doi:10.1016/j.saa.2015.07.108.
  • Vikman, M., J. Vartiainen, I. Tsitko, and P. Korhonen. 2014. Biodegradability and compostability of nanofibrillar cellulose-based products. Journal of Polymers and the Environment 23 (2):206–15. doi:10.1007/s10924-014-0694-3.
  • Vilarinho, F., A. S. Silva, M. F. Vaz, and J. P. Farinha. 2017. Nanocellulose in green food packaging. Critical Reviews in Food Science and Nutrition 0:1–12. doi:10.1080/10408398.2016.1270254.
  • Wang, L., D. J. Gardner, and D. W. Bousfield. 2018. Cellulose nanofibril-reinforced polypropylene composites for material extrusion: Rheological properties. Polymer Engineering and Science 58 (5):793–801. doi:10.1002/pen.24615.
  • Wang, Y., X. Wei, J. Li, F. Wang, Q. Wang, J. Chen, and L. Kong. 2015. Study on nanocellulose by high pressure homogenization in homogeneous isolation. Fibers and Polymers 16 (3):572–78. doi:10.1007/s12221-015-0572-1.
  • Watanabe, A., S. Morita, S. Kokot, M. Matsubara, K. Fukai, and Y. Ozaki. 2006. Drying process of microcrystalline cellulose studied by attenuated total reflection IR spectroscopy with two-dimensional correlation spectroscopy and principal component analysis. Journal of Molecular Structure 799 (1–3):102–10. doi:10.1016/j.molstruc.2006.03.018.
  • Wise, L. E., M. Murphy, and A. A. D’Addieco. 1946. A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade Journal 122 (2):35–43.
  • Žepič, V., E. S. Fabjan, M. Kasunič, R. C. Korošec, A. Hančič, O. Primož, L. S. Perše, and I. Poljanšek. 2014. Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC). Holzforschung 68 (6):657–67. doi:10.1515/hf-2013-0132.
  • Zhu, Z., W. Wang, X. Wang, X. Zhao, N. Xia, F. Kong, and S. Wang. 2021. Easy way to prepare dispersible CNC dry powder by precipitation and Conventional Evaporation. Cellulose 28(15):9661–76. Springer Netherlands. doi:10.1007/s10570-021-04123-y.
  • Zimmermann, M. V. G., C. Borsoi, A. Lavoratti, M. Zanini, A. J. Zattera, and R. M. C. Santana. 2016. Drying techniques applied to cellulose nanofibers. Journal of Reinforced Plastics and Composites 35 (8):682–97. doi:10.1177/0731684415626286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.