355
Views
3
CrossRef citations to date
0
Altmetric
Review

Review on Mechanical and Thermal Properties of Pineapple Leaf Fiber (PALF) Reinforced Composite

ORCID Icon & ORCID Icon
Pages 10157-10178 | Published online: 29 Dec 2021

References

  • Asim, M., M. T. Paridah, N. Saba, M. Jawaid, O. Y. Alothman, M. Nasir, and Z. Almutairi. 2018. Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Composite Structures 202:1330–38. doi:10.1016/j.compstruct.2018.06.068.
  • Bakar, N., C. Y. Chee, L. C. Abdullah, C. T. Ratnam, and N. Azowa. 2014. Effect of methyl methacrylate grafted kenaf on mechanical properties of polyvinyl chloride/ethylene vinyl acetate composites. Composites. Part A, Applied Science and Manufacturing 63:45–50. doi:10.1016/j.compositesa.2014.03.023.
  • Berzin, F., T. Amornsakchai, A. Lemaitre, R. Castellani, and B. Vergnes. 2019. Influence of fiber content on rheological and mechanical properties of pineapple leaf fibers-polypropylene composites prepared by twin-screw extrusion. Polymer Composites 40 (12):4519–29. doi:10.1002/pc.25308.
  • Bhattacharya, A., and B. N. Misra. 2004. Grafting: A versatile means to modify polymers: techniques, factors and applications. Progress in Polymer Science 29 (8):767–814. doi:10.1016/j.progpolymsci.2004.05.002.
  • Buitrago, B., F. Jaramillo, and M. Gómez. 2015. Some properties of natural fibers (sisal, pineapple, and banana) in comparison to man-made technical fibers (aramide, glass, carbon). Journal of Natural Fibers 12 (4):357–67. doi:10.1080/15440478.2014.929555.
  • Cheirmakani, B. M., B. Subburaj, and V. Balasubramanian. 2020. Exploring the properties of pineapple leaf fiber and Prosopis juliflora powder reinforced epoxy composite. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2020.1798844.
  • Devi, L. U., S. S. Bhagawan, and S. Thomas. 2011. Dynamic mechanical properties of pineapple leaf fiber polyester composites. Polymer Composites 32 (11):1741–50. doi:10.1002/pc.21197.
  • Devi, L. U., S. S. Bhagawan, and S. Thomas. 2012. Polyester composites of short pineapple fiber and glass fiber: tensile and impact properties. Polymer Composites 33 (7):1064–70. doi:10.1002/pc.22217.
  • Feng, N. L., S. D. Malingam, C. W. Ping, and M. Z. Selamat. 2020b. Mechanical characterization of metal-composite laminates based on cellulosic kenaf and pineapple leaf fiber. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2020.1807437.
  • Feng, N. L., S. D. Malingam, C. W. Ping, and N. Razali. 2020a. Mechanical properties and water absorption of kenaf/pineapple leaf fiber-reinforced polypropylene hybrid composites. Polymer Composites 41 (4):1255–64. doi:10.1002/pc.25451.
  • Furtos, G., L. Molnar, L. Silaghi-Dumitrescu, P. Pascuta, and K. Korniejenko. 2021a. Mechanical and thermal properties of wood fiber reinforced geopolymer composites. Journal of Natural Fibers 1–16. https://www.tandfonline.com/doi/ref/10.1080/15440478.2021.1929655
  • Furtos, G., L. Silaghi-Dumitrescu, P. Pascuta, C. Sarosi, and K. Korniejenko. 2021b. Mechanical properties of wood fiber reinforced geopolymer composites with sand addition. Journal of Natural Fibers 18 (2):285–96. doi:10.1080/15440478.2019.1621792.
  • George, J., S. S. Bhagawan, and S. Thomas. 1998. Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre. Composites Science and Technology 58 (9):1471–85. doi:10.1016/S0266-3538(97)00161-9.
  • Girijappa, Y. G., S. M. Rangappa, J. Parameswaranpillai, and S. Siengchin. 2019. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in Materials 6:226. doi:10.3389/fmats.2019.00226.
  • Gohil, P. P., V. Chaudhary, and K. Patel. 2015. Challenges in machining of natural fibre composites. In Manufacturing of Natural Fibre Reinforced Polymer Composites, ed. M. S. Salit, M. Jawaid, N. B. Yusoff, and M. E. Hoque, 139–53.Cham :Springer International Publishing. doi:10.1007/978-3-319-07944-8_7.
  • Gupta, M. K., and R. K. Srivastava. 2014. Tensile and flexural properties of sisal fibre reinforced epoxy composite: a comparison between unidirectional and mat form of fibres. Procedia Materials Science 5:2434–39. doi:10.1016/j.mspro.2014.07.489.
  • Gürdağ, G., and S. Sarmad. 2013. Cellulose Graft Copolymers: Synthesis, Properties, and Applications. In Polysaccharide Based Graft Copolymers, ed. 15–57. S. Kalia and M. W. Sabaa, Berlin, Heidelberg:Springer. doi:10.1007/978-3-642-36566-9_2.
  • Hanafee, Z. M., A. Khalina, M. Norkhairunnisa, Z. Edi Syams, and L. Kan Ern. 2019. The effect of different linear robot travel speed on mass flowrate of pineapple leaf fibre (PALF) automated spray up composite. Composites Part B: Engineering 156:220–28. doi:10.1016/j.compositesb.2018.08.090.
  • Hassan, M. L., and A. M. A. Nada. 2003. Utilization of lignocellulosic fibers in molded polyester composites. Journal of Applied Polymer Science 87 (4):653–60. doi:10.1002/app.11400.
  • India production of PINEAPPLE. 2020. https://agriexchange.apeda.gov.in/india%20production/India_Production.aspx?cat=fruit&hscode=1056
  • Jain, J., S. Sinha, and S. Jain. 2019. Compendious characterization of chemically treated natural fiber from pineapple leaves for reinforcement in polymer composites. Journal of Natural Fibers 18 (6):1–12. doi:10.1080/15440478.2019.1658256.
  • Jawaid, M., H. P. S. Abdul Khalil, and A. Abu Bakar. 2011. Woven hybrid composites: tensile and flexural properties of oil palm-woven jute fibres based epoxy composites. Materials Science and Engineering: A 528 (15):5190–95. doi:10.1016/j.msea.2011.03.047.
  • Jones, R. 1999. Mechanics Of Composite Materials - 2nd Edition.
  • Jose, S., R. Salim, and L. Ammayappan. 2016. An overview on production, properties, and value addition of pineapple leaf fibers (PALF). Journal of Natural Fibers 13 (3):362–73. doi:10.1080/15440478.2015.1029194.
  • Kakati, N., E. Assanvo, and D. Kalita. 2019. Alkalinization and graft copolymerization of pineapple leaf fiber cellulose and evaluation of physic-chemical properties. Polymer Composites 40 (4):1395–403. doi:10.1002/pc.24873.
  • Kala, T., K. Maharshi, S. Patel, and R. Panwar. 2021. Electromagnetic and mechanical characterization of iron reinforced natural fiber composites for microwave absorbing applications. Advanced Composite Materials 1–11. doi:10.1080/09243046.2021.1904345.
  • Kalambettu, A., A. Damodaran, S. Dharmalingam, and M. T. Vallam. 2015. Evaluation of biodegradation of pineapple leaf fiber reinforced PVA composites. Journal of Natural Fibers 12 (1):39–51. doi:10.1080/15440478.2014.880104.
  • Kengkhetkit, N., and T. Amornsakchai. 2012. Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Industrial Crops and Products 40:55–61. doi:10.1016/j.indcrop.2012.02.037.
  • Kenna, M., and H. O’Hear. 2004. Handbook of fibre rope technology - 1st Edition. https://www.elsevier.com/books/handbook-of-fiber-rope-technology/mckenna/978-1-85573-606–1
  • Khalil, H. P. S. A., M. S. Alwani, and A. K. M. Omar. 2006. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 1 (2):220–32. doi:10.15376/biores.1.2.220-232.
  • Kozłowski, R., and M. Władyka‐Przybylak. 2008. Flammability and fire resistance of composites reinforced by natural fibers. Polymers for Advanced Technologies 19 (6):446–53. doi:10.1002/pat.1135.
  • Laftah, W. A., and W. A. W. A. Rahman. 2016. Pulping process and the potential of using non-wood pineapple leaves fiber for pulp and paper production: A review. Journal of Natural Fibers 13 (1):85–102. doi:10.1080/15440478.2014.984060.
  • Loix, C., M. Huybrechts, J. Vangronsveld, M. Gielen, E. Keunen, and A. Cuypers. 2017. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Frontiers in Plant Science 8:1867. doi:10.3389/fpls.2017.01867.
  • Luo, S., and A. N. Netravali. 1999. Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibers and poly (hydroxybutyrate-co-valerate) resin. Polymer Composites 20 (3):367–78. doi:10.1002/pc.10363.
  • Madnasri, S., G. Astika, and P. Marwoto. 2020. The effects of natural fiber orientations on the mechanical properties of brake composites. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2020.1838989.
  • Maharshi, K., and S. Patel. 2021. Experimental statistical analysis of tensile and shear properties of the jute fabric epoxy composites. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2021.1966572.
  • Mangal, R., N. S. Saxena, M. S. Sreekala, S. Thomas, and K. Singh. 2003. Thermal properties of pineapple leaf fiber reinforced composites. Materials Science and Engineering: A 339 (1):281–85. doi:10.1016/S0921-5093(02)00166-1.
  • Manimaran, P., M. R. Sanjay, P. Senthamaraikannan, M. Jawaid, S. S. Saravanakumar, and R. George. 2019. Synthesis and characterization of cellulosic fiber from red banana peduncle as reinforcement for potential applications. Journal of Natural Fibers 16 (5):768–80. doi:10.1080/15440478.2018.1434851.
  • Mercy, J. L., P. Sivashankari, M. Sangeetha, K. R. Kavitha, and S. Prakash. 2020. Genetic optimization of machining parameters affecting thrust force during drilling of pineapple fiber composite plates – an experimental approach. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2020.1788484.
  • Mishra, S., A. K. Mohanty, L. T. Drzal, M. Misra, S. Parija, S. K. Nayak, and S. S. Tripathy. 2003. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology 63 (10):1377–85. doi:10.1016/S0266-3538(03)00084-8.
  • Mishra, S., A. Mohanty, L. Drzal, M. Misra, and G. Hinrichsen. 2004. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering 289 (11):955–74. doi:10.1002/mame.200400132.
  • Mohamed, A. R., S. M. Sapuan, M. Shahjahan, and A. Khalina. 2009. Characterization of pineapple leaf fibers from selected Malaysian cultivars. Journal of Food, Agriculture & Environment 7 (1):235–40.
  • Mohanty, A. K., M. Misra, and G. Hinrichsen. 2000. Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering 276-277 (1):1–24. doi:https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3C1::AID-MAME1%3E3.0.CO;2-W.
  • Monteiro, S. N., V. Calado, R. J. S. Rodriguez, and F. M. Margem. 2012. Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview. Materials Science and Engineering: A 557:17–28. doi:10.1016/j.msea.2012.05.109.
  • Mukherjee, P. S., and K. G. Satyanarayana. 1986. Structure and properties of some vegetable fibres. Journal of Materials Science 21 (1):51–56. doi:10.1007/BF01144698.
  • Najeeb, M. I., M. T. H. Sultan, Y. Andou, A. U. M. Shah, K. Eksiler, M. Jawaid, and A. H. Ariffin. 2020a. Characterization of lignocellulosic biomass from malaysian’s yankee pineapple AC6 toward composite application. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2019.1710655.
  • Najeeb, M. I., M. T. H. Sultan, Y. Andou, A. U. M. Shah, K. Eksiler, M. Jawaid, and A. H. Ariffin. 2020b. Characterization of silane treated Malaysian yankee pineapple AC6 leaf fiber (PALF) towards industrial applications. Journal of Materials Research and Technology 9 (3):3128–39. doi:10.1016/j.jmrt.2020.01.058.
  • Natural Fiber Reinforced Composites Market. https://www.mordorintelligence.com/industry-reports/natural-fiber-reinforced-composites-market
  • Neto, A. R. S., P. I. C. Claro, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini. 2018. Poly(lactic acid) composites reinforced with leaf fibers from ornamental variety of hybrid pineapple (Potyra). Polymer Composites 39 (11):4050–57. doi:10.1002/pc.24464.
  • Nishino, T., I. Matsuda, and K. Hirao. 2004. All-cellulose composite. Macromolecules 37 (20):7683–87. doi:10.1021/ma049300h.
  • Poletto, M., H. L. Ornaghi, and A. J. Zattera. 2014. Native cellulose: structure, characterization and thermal properties. Materials 7 (9):6105–19. doi:10.3390/ma7096105.
  • Potluri, R. 2019. Mechanical properties of pineapple leaf fiber reinforced epoxy infused with silicon carbide micro particles. Journal of Natural Fibers 16 (1):137–51. doi:10.1080/15440478.2017.1410511.
  • Rachini, A., M. L. Troedec, C. Peyratout, and A. Smith. 2009. Comparison of the thermal degradation of natural, alkali-treated and silane-treated hemp fibers under air and an inert atmosphere. Journal of Applied Polymer Science 112 (1):226–34. doi:10.1002/app.29412.
  • Ramesh, M., J. D. J. Dhilip, S. Akilan, B. Ganeshprasad, and G. H. Shankar. 2020. Influence of stacking sequence on mechanical and thermal characteristics of banana-pineapple fiber reinforced epoxy composites. Journal of Natural Fibers 1–14. doi:10.1080/15440478.2020.1848734.
  • Ravandi, M., M. Banu, and M. Noorian. 2020. Uncertainty analysis of mechanical behavior of natural fiber composites.
  • Rosa, M., E. Medeiros, J. Malmonge, K. S. Gregorski, D. Wood, L. H. C. Mattoso, G. Glenn, W. J. Orts, and S. Imam. 2010. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers 81 (1):83–92. doi:10.1016/j.carbpol.2010.01.059.
  • Santos, R. M., W. P. Flauzino Neto, H. A. Silvério, D. F. Martins, N. O. Dantas, and D. Pasquini. 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products 50:707–14. doi:10.1016/j.indcrop.2013.08.049.
  • Sapuan, S. M., A. R. Mohamed, J. P. Siregar, and M. R. Ishak. 2011. Pineapple leaf fibers and palf-reinforced polymer composites. In Cellulose fibers: bio- and nano-polymer composites: green chemistry and technology, ed. S. Kalia, B. S. Kaith, and I. Kaur, 325–43. Springer:Berlin, Heidelberg. doi:10.1007/978-3-642-17370-7_12.
  • Segal, L., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Sena Neto, A. R., M. A. M. Araujo, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini. 2013. Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Industrial Crops and Products 43:529–37. doi:10.1016/j.indcrop.2012.08.001.
  • Sena Neto, A. R., M. A. M. Araujo, R. M. P. Barboza, A. S. Fonseca, G. H. D. Tonoli, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini. 2015. Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products 64:68–78. doi:10.1016/j.indcrop.2014.10.042.
  • Senthilkumar, K., N. Saba, M. Chandrasekar, M. Jawaid, N. Rajini, O. Y. Alothman, and S. Siengchin. 2019. Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Construction and Building Materials 195:423–31. doi:10.1016/j.conbuildmat.2018.11.081.
  • Siakeng, R., M. Jawaid, H. Ariffin, and S. M. Sapuan. 2019. Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polymer Composites 40 (5):2000–11. doi:10.1002/pc.24978.
  • Sinha, E., and S. K. Rout. 2009. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bulletin of Materials Science 32 (1):65. doi:10.1007/s12034-009-0010-3.
  • Sivasubramanian, P., K. Mayandi, C. Santulli, A. Alavudeen, and N. Rajini. 2020. Effect of fiber length on curing and mechanical behavior of pineapple leaf fiber (PALF) reinforced natural rubber composites. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2020.
  • Souza, C. P. F., C. F. Ferreira, E. H. de Souza, A. R. S. Neto, J. M. Marconcini, C. A. da Silva Ledo, and F. V. D. Souza. 2017. Genetic diversity and ISSR marker association with the quality of pineapple fiber for use in industry. Industrial Crops and Products 104:263–68. doi:10.1016/j.indcrop.2017.04.059.
  • Sukumaran, K., K. G. Satyanarayana, S. G. K. Pillai, and K. K. Ravikumar. 2001. Structure, physical and mechanical properties of plant fibers of Kerala. Metals Materials and Processes 13:121–36.
  • Tanpichai, S., and S. Witayakran. 2018. All-Cellulose composites from pineapple leaf microfibers: structural, thermal, and mechanical properties. Polymer Composites 39 (3):895–903. doi:10.1002/pc.24015.
  • Threepopnatkul, P., N. Kaerkitcha, and N. Athipongarporn. 2009. Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Composites Part B: Engineering 40 (7):628–32. doi:10.1016/j.compositesb.2009.04.008.
  • Todkar, S. S., and S. A. Patil. 2019. Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering 174:106927. doi:10.1016/j.compositesb.2019.106927.
  • World pineapple production by country. 2021. Statista. https://www.statista.com/statistics/298517/global-pineapple-production-by-leading
  • Zin, M. H., K. Abdan, N. Mazlan, E. S. Zainudin, K. E. Liew, and M. N. Norizan. 2019. Automated spray up process for pineapple leaf fibre hybrid biocomposites. Composites Part B: Engineering 177:107306. doi:10.1016/j.compositesb.2019.107306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.