120
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Structural and Thermal Properties of Cellulose Microfiber Isolated from Typha Australis by Sequential Alkali-Oxidative Treatment

ORCID Icon
Pages 10526-10538 | Published online: 31 Oct 2021

References

  • Alemdar, A., and M. Sain. 2008. Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource Technology 99 (6):1664–71. doi:10.1016/j.biortech.2007.04.029.
  • Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015. Characterization of new natural cellulosic fiber from Acacia leucophloea bark. International Journal of Polymer Analysis and Characterization 20 (4):367–76. doi:10.1080/1023666X.2015.1018737.
  • Avolio, R., I. Bonadies, D. Capitani, M. E. Errico, G. Gentile, and M. Avella. 2012. A multitechnique approach to assess the effect of ball milling on cellulose. Carbohydrate Polymers 87 (1):265–73. doi:10.1016/j.carbpol.2011.07.047.
  • Baghaei, B., and M. Skrifvars. 2020. All-cellulose composites: A review of recent studies on structure, properties and applications. Molecules 25 (12):2836. doi:10.3390/molecules25122836.
  • Bahloul, A., Z. Kassab, M. E. Bouchti, H. Hannache, M. Oumam, M. E. Achaby, and M. El Achaby. 2021. Micro-and nano-structures of cellulose from eggplant plant (Solanum melongena L) agricultural residue. Carbohydrate Polymers 253:117311. doi:10.1016/j.carbpol.2020.117311.
  • Bansal, S., S. C. Lishawa, S. Newman, B. A. Tangen, D. Wilcox, D. Albert, M. J. Anteau, M. J. Chimney, R. L. Cressey, and D. Edward. 2019. Typha (Cattail) invasion in North American wetlands: Biology, regional problems, impacts, ecosystem services, and management. Wetlands 39 (4):645–84.
  • Barragán, E. U. P., C. F. C. Guerrero, A. M. Zamudio, A. B. M. Cepeda, T. Heinze, and A. Koschella. 2019. Isolation of cellulose nanocrystals from Typha domingensis named southern cattail using a batch reactor. Fibers and Polymers 20 (6):1136–44. doi:10.1007/s12221-019-8973-1.
  • Barragán, Eder Uzziel Pulido, Carlos Fernando Castro Guerrero, Ana María Zamudio, Ana Beatriz Morales Cepeda, Thomas Heinze, and Andreas Koschella. 2019. “Isolation of cellulose nanocrystals from Typha domingensis named southern cattail using a batch reactor.” Fibers and Polymers 20 (6):1136–1144.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Binoj, J. S., R. Edwin Raj, V. S. Sreenivasan, and G. Rexin Thusnavis. 2016. Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian areca fruit husk fibers (Areca catechu L.) as potential alternate for hazardous synthetic fibers. Journal of Bionic Engineering 13 (1):156–65. doi:10.1016/S1672-6529(14)60170-0.
  • Bolio-Lopez, G. I, G. Cadenas-Madrigal, L. Veleva, R. Falconi, P. Cruz-Burelo, M. M. Hernandez-Villegas, and L. Pelayo-Munoz. 2015.„Extraction of cellulose fibers from to leaf petioles (Calathea lutea) and characterization.“ International Journal of Innovative Science, Engineering & Technology 2 (4):977–981
  • Boopathi, L., P. S. Sampath, and K. Mylsamy. 2012. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Composites Part B: Engineering 43 (8):3044–52. doi:10.1016/j.compositesb.2012.05.002.
  • Brebu, M., and C. Vasile. 2010. Thermal degradation of lignin—a review. Cellulose Chemistry & Technology 44 (9):353.
  • Cabrales, L., and N. Abidi. 2010. On the thermal degradation of cellulose in cotton fibers. Journal of Thermal Analysis and Calorimetry 102 (2):485–91. doi:10.1007/s10973-010-0911-9.
  • César, N. R., M. A. Pereira-da-silva, V. R. Botaro, and A. J. de Menezes. 2015. Cellulose nanocrystals from natural fiber of the macrophyte Typha domingensis: Extraction and characterization. Cellulose 22 (1):449–60. doi:10.1007/s10570-014-0533-7.
  • Chakma, K., N. Cicek, and M. Rahman. 2017. Fiber extraction efficiency, quality and characterization of cattail fibres for textile applications. Paper presented at the Proceedings of the Canadian Society for Bioengineering Conference (CSBE), Canad Inns Polo Park, Winnipeg, Manitoba.
  • Colbers, B., S. Cornelis, E. Geraets, N. Gutiérrez-Valdés, L. M. Tran, E. Moreno-Giménez, and M. Ramírez-Gaona. 2017. A feasibility study on the usage of cattail (Typha spp.) for the production of insulation materials and bio-adhesives, Vol. 71. Netherlands: Wageningen University and Research Centre Wageningen.
  • Dalmis, R., S. Köktaş, Y. Seki, and A. Ç. Kılınç. 2020. Characterization of a new natural cellulose based fiber from Hierochloe Odarata. Cellulose 27 (1):127–39. doi:10.1007/s10570-019-02779-1.
  • Ferreira, R. R., A. G. Souza, L. L. Nunes, N. Shahi, V. K. Rangari, and D. Dos Santos Rosa. 2020. Use of ball mill to prepare nanocellulose from eucalyptus biomass: Challenges and process optimization by combined method. Materials Today Communications 22:100755. doi:10.1016/j.mtcomm.2019.100755.
  • Fortea-Verdejo, M., E. Bumbaris, C. Burgstaller, A. Bismarck, and K.-Y. Lee. 2017. Plant fibre-reinforced polymers: Where do we stand in terms of tensile properties? International Materials Reviews 62 (8):441–64. doi:10.1080/09506608.2016.1271089.
  • French, A. D. 2020. Increment in evolution of cellulose crystallinity analysis. Cellulose 1–4. doi:10.1007/s10570-020-03172-z.
  • Gibson, L. J. 2012. The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface 9 (76):2749–66. doi:10.1098/rsif.2012.0341.
  • Hasan, M. 2019. “Optimization of Typha fibre extraction and properties for composite applications using desirability function analysis.” University of Manitoba.
  • Karakoti, A., S. Biswas, J. Ronald Aseer, N. Sindhu, and M. R. Sanjay. 2018. Characterization of microfiber isolated from Hibiscus sabdariffa var. altissima fiber by steam explosion. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2018.1477085.
  • Kassab, Z., Y. Abdellaoui, M. H. Salim, R. Bouhfid, M. E. Achaby, and M. El Achaby. 2020. Micro-and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials. Carbohydrate Polymers 245:116506. doi:10.1016/j.carbpol.2020.116506.
  • Khenblouche, A., D. Bechki, M. Gouamid, K. Charradi, L. Segni, M. Hadjadj, and S. Boughali. 2019. Extraction and characterization of cellulose microfibers from Retama raetam stems. Polímeros 29 (1):1–8. doi:10.1590/0104-1428.05218.
  • Li, M., L.-J. Wang, L. Dong, Y.-L. Cheng, and B. Adhikari. 2014. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydrate Polymers 102:136–43. doi:10.1016/j.carbpol.2013.11.021.
  • Maji, S. 2013. “Extraction of high quality cellulose from the stem of calotropis procera.South Asian journal of Experimental Biology 3 (3):113–118.
  • Miao, C., and W. Y. Hamad. 2013. Cellulose reinforced polymer composites and nanocomposites: A critical review. Cellulose 20 (5):2221–62.
  • Moghaddam, M. K., and S. M. Mortazavi. 2016. Physical and chemical properties of natural fibers extracted from Typha australis leaves. Journal of Natural Fibers 13 (3):353–61. doi:10.1080/15440478.2015.1029199.
  • Moghaddam, Meghdad, K. 2021. Typha leaves fiber and its composites: A review. Journal of Natural Fibers 1–15. doi:10.1080/15440478.2020.1870643.
  • Mohamed, M. A., W. N. Wan Salleh, J. Jaffar, and A. H. F. A. Ismail. 2016. The utilization of recycled newspaper in the production of cellulose microfiber. Advanced Materials Research 1133: 644–648
  • Mortazavi, S. M., and M. Kamali Moghaddam. 2010. An analysis of structure and properties of a natural cellulosic fiber (Leafiran). Fibers and Polymers 11 (6):877–82. doi:10.1007/s12221-010-0877-z.
  • Mortazavi, S. M., and M. K. Moghadam. 2009. Introduction of a new vegetable fiber for textile application. Journal of Applied Polymer Science 113 (5):3307–12. doi:10.1002/app.30301.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science 84 (12):2222–34. doi:10.1002/app.10460.
  • Mylsamy, K., and I. Rajendran. 2010. Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber. Journal of Reinforced Plastics and Composites 29 (19):2925–35. doi:10.1177/0731684410362817.
  • Paridah, M. T., A. B. Basher, S. SaifulAzry, and Z. Ahmed. 2011. Retting process of some bast plant fibres and its effect on fibre quality: A review. BioResources 6 (4):5260–81.
  • Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3 (1):1–10. doi:10.1186/1754-6834-3-10.
  • Poletto, M., H. L. O. Júnior, and A. J. Zattera. 2015. Thermal decomposition of natural fibers: Kinetics and degradation mechanisms. Reactions and Mechanisms in Thermal Analysis of Advanced Materials Chapter 21:515–45.
  • Puttaswamy, M., S. Govindan, and K. V. Shetty. 2017. Biofibres from biofuel industrial byproduct-Pongamia pinnata seed hull. Bioresources and Bioprocessing 4 (14): 1-10. https://doi.org/10.1186/s40643-017-0144-x.
  • Reddy, J. P., and J.-W. Rhim. 2018. Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. Journal of Natural Fibers 15 (4):465–73. doi:10.1080/15440478.2014.945227.
  • Reddy, K. O., C. Uma Maheswari, M. S. Dhlamini, and V. P. Kommula. 2016. Exploration on the characteristics of cellulose microfibers from Palmyra palm fruits. International Journal of Polymer Analysis and Characterization 21 (4):286–95. doi:10.1080/1023666X.2016.1147799.
  • Reddy, K. O., J. Zhang, J. Zhang, and A. Varada Rajulu. 2014. Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohydrate Polymers 114:537–45. doi:10.1016/j.carbpol.2014.08.054.
  • Reddy, N., and Y. Yang. 2007. Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems. Journal of Agricultural and Food Chemistry 55 (14):5569–74. doi:10.1021/jf0707379.
  • Rezig, S., M. Jaouadi, F. Khoffi, S. Msahli, and B. Durand. 2016. Optimization of extraction process of Typha leaf fibres. Indian Journal of Fibre & Textile Research (IJFTR) 41 (3):242–48.
  • Shukla, S. K., D. Srivastava, and K. Srivastava. 2015. Synthesis, spectral and thermal degradation kinetics of the epoxidized resole resin derived from cardanol. Advances in Polymer Technology 34 (1). doi:10.1002/adv.21469.
  • Smole, S., S. H. Majda, K. S. Kleinschek, and K. Tatjana. 2013. Plant fibres for textile and technical applications. Advances in Agrophysical Research Chapter 15: 369–98. doi:10.5772/52372.
  • Son, H. N., Y. B. Seo, and Y. B. Seo. 2015. Physical and bio-composite properties of nanocrystalline cellulose from wood, cotton linters, cattail, and red algae. Cellulose 22 (3):1789–98. doi:10.1007/s10570-015-0633-z.
  • Sonia, A., and K. Priya Dasan. 2013. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydrate Polymers 92 (1):668–74. doi:10.1016/j.carbpol.2012.09.015.
  • Sonia, A. K., and K. P. Dasan. 2016. Feasibility studies of cellulose microfiber (CMF) reinforced poly (ethylene-co-vinyl acetate)(EVA) composites for food packaging applications. Science and Engineering of Composite Materials 23 (5):489–94. doi:10.1515/secm-2014-0252.
  • Stanislas, T. T., J. F. Tendo, E. B. Ojo, O. F. Ngasoh, P. A. Onwualu, E. Njeugna, and H. S. Junior. 2020. Production and characterization of pulp and nanofibrillated cellulose from selected tropical plants. Journal of Natural Fibers 1–17. doi:10.1080/15440478.2020.1787915.
  • Sukmawan, R., M. Waziz Wildan, L. H. Saputri, R. Rochmadi, and H. S. B. Rochardjo. 2019. Microfibrillated cellulose extraction from bagasse using a modified kitchen blender. Materials Science Forum. 948: 186-191.
  • Sundarraj, A. A., and T. V. Ranganathan. 2018b. A review on cellulose and its utilization from agro-industrial waste. Drug Inven Today 10:89–94.
  • Tanpichai, S., S. Witayakran, and A. Boonmahitthisud. 2019. Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. Journal of Environmental Chemical Engineering 7 (1):102836. doi:10.1016/j.jece.2018.102836.
  • Vigneshwaran, K., P. Murugadoss, and K. Gokul. 2017. “Extraction and characterization of microfibers obtained from banana waste.” SAE Technical Paper:1–9. doi: 10.4271/2017-28-1987.
  • Xiao, B., X. Sun, and R. Sun. 2001. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability 74 (2):307–19. doi:10.1016/S0141-3910(01)00163-X.
  • Xing, Q., F. Zhao, S. Chen, J. McNamara, M. A. DeCoster, and Y. M. Lvov. 2010. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta biomaterialia 6 (6):2132–39. doi:10.1016/j.actbio.2009.12.036.
  • Yang, H., R. Yan, H. Chen, C. Zheng, D. H. Lee, and D. T. Liang. 2006. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels 20 (1):388–93. doi:10.1021/ef0580117.
  • Yao, W., Y. Weng, and J. M. Catchmark. 2020. Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27(10): 5563-5579.
  • Zhang, J., X. Yan, S. Cao, and X. Guangbiao. 2018. Morphological characterization and properties of cattail fibers. Materiali in Tehnologije 52 (5):625–31. doi:10.17222/mit.2018.062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.