96
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Totally Bio-Based, Recyclable Wood Filler-Feather Resin Composite

, , , &
Pages 10679-10692 | Published online: 17 Nov 2021

References

  • Akahane, K., S. Murozono, and K. Murayama. 1977. Soluble protein from fowl feather keratin. I. Fraction and properties. The Journal of Biochemistry 81 (1):11–18. https://www.jstage.jst.go.jp/article/biochemistry1922/81/1/81_1_11/_pdf.
  • Asquith, R. S., and N. H. Leon. 1977. Chemical reactions of keratin fibers. In Chemictry of natural protein fibers, ed. R. S. Asquith, 198–202. New York: Plenum Press.
  • Ayutthaya, S. I. N., S. Tanpichai, and J. Wootthikanokkhan. 2015. Keratin extracted from chicken feather waste: Extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns. Journal of Polymers and the Environment 23 (4):506–16. doi:10.1007/s10924-015-0725-8.
  • Bledzki, A. K., and J. Gassan. 1997. Natural fiber reinforced plastics. In Handbook of engineering polymeric materials, ed. N. P. Cheremisinoff, 787–837. New York: Marcel Dekker, Inc.
  • Brebu, M., and I. Spiridon. 2011. Thermal degradation of keratin waste. Journal of Analytical and Applied Pyrolysis 91 (2):288–95. doi:10.1016/j.jaap.2011.03.003.
  • Doan, -T.-T.-L., S.-L. Gao, and E. Mäder. 2006. Jute/polypropylene composites I. Effect of matrix modification. Composites Science and Technology 66 (7–8):952–63. doi:10.1016/j.compscitech.2005.08.009.
  • Endo, R., Y. Kawahara, and T. Kimura. 2004. Shrinkproof and reinforcing effects of duck feather hydrolysate on the treatment of archaeological waterlogged wood. Sen’i Gakkaishi 60:372–76. doi:10.2115/fiber.60.372.
  • Fedors, R. T. 1974. A method for estimating both the solubility parameters and molar volumes of liquids. Polymer Engineering and Science 14 (2):147–54. doi:10.1002/pen.760140211.
  • Fraser, R. D. B., T. P. MacRae, D. A. D. Parry, and E. Suzuki. 1971. The structure of feather keratin. Polymer 12 (1):35–56. doi:10.1016/0032-3861(71)90011-5.
  • Harada, T., K. Fujimori, S. Hirose, and M. Masada. 1966. Growth and β-Glucan 10C3K production by a mutant of alcaligenes faecalis var. myxogenes in defined medium. Agricultural and Biological Chemistry 30 (8):764–69. doi:10.1080/00021369.1966.10858682.
  • Jin, E., N. Reddy, Z. Zhu, and Y. Yang. 2011. Graft polymerization of native chicken feathers for thermoplastic applications. Journal of Agricultural and Food Chemistry 59 (5):1729–38. doi:10.1021/jf1039519.
  • Kabir, M. A., M. M. Huque, M. R. Islam, and A. K. Bledzki. 2010. Mechanical properties of jute fiber reinforced polypropylene composite: Effect of chemical treatment by benzenediazonium salt in alkaline medium. BioResources 5 (3):1618–25. doi:10.15376/biores.5.3.1618-1625.
  • Kawahara, Y., and S. Hirai. 2018. Resinification behavior of regenerated feather keratin powder. Journal of Natural Fibers 15 (5):707–16. doi:10.1080/15440478.2017.1361370.
  • Kawahara, Y., H. Ohnishi, S. Asakawa, and H. Wakizaka. 2021. Recrystallization behavior and mechanical, and carbonizing properties of feather keratin resin sheets produced by hot-compression molding. Journal of Macromolecular Science, Part B 60 (8):571–88. doi:10.1080/00222348.2021.1887597.
  • Kawahara, Y., T. Ohtani, and M. Nakamura. 2020. Direct resinification of two (1→3)-β-D-glucans, curdlan and paramylon, via hot-press compression molding. Journal of Macromolecular Science, Part B 59 (10):635–47. doi:10.1080/00222348.2020.1766758.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2002. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment 10 (1/2):19–26. doi:10.1023/A:1021013921916.
  • Murayama, K., T. Ueno, H. Kobori, Y. Kojima, S. Suzuki, K. Aoki, H. Ito, S. Ogoe, and M. Okamoto. 2019. Mechanical properties of wood/plastic composites formed using wood flour produced by wet ball-milling under various milling times and drying methods. Journal of Wood Science 65 (1):5. doi:10.1186/s10086-019-1788-2.
  • Pan, P., B. Zhu, W. Kai, S. Serizawa, M. Iji, and Y. Inoue. 2007. Crystallization behavior and mechanical properties of bio-based green composites based on poly(L-lactide) and kenaf fiber. Journal of Applied Polymer Science 105 (3):1511–20. doi:10.1002/app.26407.
  • Puglia, D., J. Biagiotti, and J. M. Kenny. 2005. A review on natural fibre-based composites part II: Application of natural reinforcements in composite materials for automotive industry. Journal of Natural Fibers 1 (3):23–65. doi:10.1300/J395v01n03_03.
  • Tai, S., K. Miyauchi, T. Kiryu, Y. Miyoshi, and Y. Furuta. 2016. Deformation behavior of cells in radial compression of Japanese cedar and Japanese cypress. JSMS 65:365–70. doi:10.2472/jsms.65.365.
  • Takahashi, K., H. Yamamoto, Y. Yokote, and M. Hattori. 2004. Thermal behavior of fowl feather keratin. Bioscience, Biotechnology, and Biochemistry 68 (9):1875–81. doi:10.1271/bbb.68.1875.
  • Tsuboi, M., F. Kaneuchi, T. Ikeda, and K. Akahane. 1991. Infrared and Raman microscopy of fowl feather barb. Canadian Journal of Chemistry 69 (11):1752–57. doi:10.1139/v91-257.
  • United Nations (2017) Resolution adopted by the general assembly on 6 July 2017, work of the statistical commission pertaining to the 2030 agenda for sustainable development.
  • Uto, T. 1965. Studies on elastic modulus of wood (1st report): On young’s modulus. Bulletin of the Faculty of Education. Kagoshima University. Natural Science 17:37–46. http://hdl.handle.net/10232/18802.
  • Xia, Y., D. I. Masse, T. A. McAllister, C. Beaulieu, and E. Ungerfeld. 2012. Anaerobic digestion of chicken feather with swine manure or slaughterhouse sludge for biogas production. Waste Management 32 (3):404–09. doi:10.1016/j.wasman.2011.10.024.
  • Xu, H., and Y. Yang. 2014. Controlled de-cross-linking and disentanglement of feather keratin for fiber preparation via a novel process. ACS Sustainable Chemistry & Engineering 2 (6):1404–10. doi:10.1021/sc400461d.
  • Yasunishi, A., Y. Tada, and K. Matsuura. 1984. Effects of pyrolyzing conditions on products in wood pyrolysis. Kagaku Kogaku Ronbunshu 10:308–14. doi:10.1252/kakoronbunshu.10.308.
  • Yin, J., S. Rastogi, A. E. Terry, and C. Popescu. 2007. Self-organization of oligopeptides obtained on dissolution of feather keratins in superheated water. Biomacromolecules 8 (3):800–06. doi:10.1021/bm060811g.
  • Yu, P., J. J. McKinnon, C. R. Christensen, and D. A. Christensen. 2004. Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure: Comparison with other feed protein sources. Journal of Agricultural and Food Chemistry 52 (24):7353–61. doi:10.1021/jf0490955.
  • Zaman, H. U., M. A. Khan, and R. A. Khan. 2012. Comparative experimental measurements of jute fiber/polypropylene and coir fiber/polypropylene composites as ionizing radiation. Polymer Composites 33 (7):1077–84. doi:10.1002/pc.22184.
  • Zhan, M., and R. P. Wool. 2011. Mechanical properties of chicken feather fibers. Polymer Composites 32 (6):937–44. doi:10.1002/pc.21112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.