256
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Skin Regeneration by Hybrid Carboxyl Methyl Cellulose/Calcium Alginate Fibers Electrospun Scaffold

, , ORCID Icon &
Pages 10723-10736 | Published online: 17 Nov 2021

References

  • Arof, A. K., N. M. Nor, N. Aziz, M. Z. Kufian, A. A. Abdulaziz, and O. O. Mamatkarimov. 2019. Investigation on morphology of composite poly (ethylene oxide)-cellulose nanofibers. Materials Today: Proceedings, 17, 388–93. 10.1016/j.matpr.2019.06.265.
  • Atila, D., D. Keskin, and A. Tezcaner. 2015. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydrate Polymers 133:251–61. doi:10.1016/j.carbpol.2015.06.109.
  • Baghersad, S., S. H. Bahrami, M. R. Mohammadi, M. R. M. Mojtahedi, and P. B. Milan. 2018. Development of biodegradable electrospun gelatin/aloe-vera/poly (ε‑caprolactone) hybrid nanofibrous scaffold for application as skin substitutes. Materials Science and Engineering: C 93:367–79. doi:10.3390/polym12061323.
  • Bhattarai, N., and M. Zhang. 2007. Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology 18 (45):455601. doi:10.1088/0957-4484/18/45/455601.
  • Bigham, A., A. O. M. Salehi, M. Rafienia, M. R. Salamat, S. Rahmati, M. G. Raucci, and L. Ambrosio. 2021. Zn-substituted Mg2SiO4 nanoparticles-incorporated PCL-silk fibroin composite scaffold: A multifunctional platform towards bone tissue regeneration. Materials Science and Engineering: C 112242. doi:10.1016/j.msec.2021.112242.
  • Cacicedo, M. L., I. E. León, J. S. Gonzalez, L. M. Porto, V. A. Alvarez, and G. R. Castro. 2016. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids and Surfaces B, Biointerfaces 140:421–29. doi:10.1016/j.colsurfb.2016.01.007.
  • Fan, L., Y. Du, R. Huang, Q. Wang, X. Wang, and L. Zhang. 2005. Preparation and characterization of alginate/gelatin blend fibers. Journal of Applied Polymer Science 96 (5):1625–29. doi:10.1002/app.21610.
  • Fraczyk, J., J. Wasko, M. Walczak, Z. J. Kaminski, D. Puchowicz, I. Kaminska, M. Bogun, M. Kolasa, E. Stodolak-Zych, A. Scislowska-Czarnecka. 2020. Conjugates of Copper Alginate with Arginine-Glycine-Aspartic Acid (RGD) for potential use in regenerative medicine. Materials 13 (2):337. doi:10.3390/ma13020337.
  • Ghiasi, Y., A. Davodiroknabadi, and S. Zohoori. 2021. Electrospinning of wheat bran cellulose/TiO 2/ZnO nanofibre and investigating the UV blocking and bactericidal properties. Bulletin of Materials Science 44 (2):1–6. doi:10.1007/s12034-021-02406-5.
  • Gilcrease, M. Z. 2007. Integrin signaling in epithelial cells. Cancer Letters 247 (1):1–25. doi:10.1016/j.canlet.2006.03.031.
  • Gobin, A. S., V. E. Froude, and A. B. Mathur. 2005. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. Journal of Biomedical Materials Research: Part A 74 (3):465–73. doi:10.1002/jbm.a.30382.
  • Han, F., Y. Dong, Z. Su, R. Yin, A. Song, and S. Li. 2014. Preparation, characteristics and assessment of a novel gelatin–chitosan sponge scaffold as skin tissue engineering material. International Journal of Pharmaceutics 476 (1–2):124–33. doi:10.1016/j.ijpharm.2014.09.036.
  • Hansen, P. E., and J. Spanget-Larsen. 2017. NMR and IR investigations of strong intramolecular hydrogen bonds. Molecules 22 (4):552. doi:10.3390/molecules22040552.
  • Hashemi, S. S., A. A. Mohammadi, H. Kabiri, M. R. Hashempoor, M. Amini, and D. Mehrabani. 2019. The healing effect of wharton’s jelly stem cells seeded on biological scaffold in chronic skin ulcers: A randomized clinical trial. Journal of Cosmetic Dermatology 18 (6):1961–67. doi:10.1111/jocd.12931.
  • Hashemi, S. S., S. Jowkar, M. Mahmoodi, A. R. Rafati, D. Mehrabani, M. Zarei, and A. Keshavarzi. 2018. Biochemical methods in production of three-dimensional scaffolds from human skin: A window in aesthetic surgery. World Journal of Plastic Surgery 7 (2):204.
  • Hosseinkhani, M., D. Mehrabani, M. H. Karimfar, S. Bakhtiyari, A. Manafi, and R. Shirazi. 2014. Tissue engineered scaffolds in regenerative medicine. World Journal Plastic Surgery 3 (1):3–7.
  • Huang, S., Y. Zhang, L. Tang, Z. Deng, W. Lu, F. Feng, X. Xu, and Y. Ji. 2009. Functional bilayered skin substitute constructed by tissue-engineered extracellular matrix and microsphere-incorporated gelatin hydrogel for wound repair. Tissue Engineering: Part A 15 (9):2617–24. doi:10.1089/ten.tea.2008.0505.
  • Keirouz, A., M. Chung, J. Kwon, G. Fortunato, and N. Radacsi. 2020. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 12 (4):e1626. doi:10.1002/wnan.1626.
  • Keshavarzi, A., S. Kardeh, M. Dehghankhalili, M. H. Varahram, M. Omidi, M. Zardosht, and D. Mehrabani. 2019. Mortality and body mass index in burn patients: Experience from a tertiary referral burn center in southern Iran. World Journal Plastic Surgery 8 (3):382–87. doi:10.29252/wjps.8.3.382.
  • Kim, C. H., M. S. Khil, H. Y. Kim, H. U. Lee, and K. Y. Jahng. 2006. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. Journal of Biomedical Materials Research: Part B, Applied Biomaterials 8 (2):283–90. doi:10.1002/jbm.b.30484.
  • Kirdponpattara, S., A. Khamkeaw, N. Sanchavanakit, P. Pavasant, and M. Phisalaphong. 2015. Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydrate Polymers 132:146–55. doi:10.1016/j.carbpol.2015.06.059.
  • Kooshamoghadam, N., S. Zohoori, M. Bekrani, S. Shahsavari, and R. Talebikatieklahijany. 2021. Enhancing physical properties of viscose by preparing Viscose/Keratin/Nano ZnO composite fabric. Journal of Natural Fibers 1–8. doi:10.1080/15440478.2020.1870631.
  • Li, X., A. Xu, H. Xie, W. Yu, W. Xie, and X. Ma. 2010. Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydrate Polymers 79 (3):660–64. doi:10.1016/j.carbpol.2009.09.020.
  • Li, Y., and I. R. Hardin. 1998. Enzymatic scouring of cotton-surfactants, agitation, and selection of enzymes. Textile Chemist & Colorist 30 (9): 23–29.
  • Ma, J., H. Wang, B. He, and J. Chen. 2001. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 22 (4):331–36. doi:10.1016/S0142-9612(00)00188-5.
  • Martins, A. F., S. P. Facchi, P. C. Da Câmara, S. E. Camargo, C. H. Camargo, K. C. Popat, and M. J. Kipper. 2018. Novel poly (ε-caprolactone)/amino-functionalized tannin electrospun membranes as scaffolds for tissue engineering. Journal of Colloid and Interface Science 225:21–30. doi:10.1016/j.jcis.2018.04.060.
  • Menzies, K. L., and L. Jones. 2010. The impact of contact angle on the biocompatibility of biomaterials. Optometry and Vision Science 87 (6):387–99. doi:10.1097/OPX.0b013e3181da863e.
  • Miguel, S. P., R. S. Sequeira, A. F. Moreira, C. S. Cabral, A. G. Mendonça, P. Ferreira, and I. J. Correia. 2019. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. European Journal of Pharmaceutics and Biopharmaceutics 139:1–22. doi:10.1016/j.ejpb.2019.03.010.
  • Mirjalili, M., and S. Zohoori. 2016. Review for application of electrospinning and electrospun nanofibers technology in textile industry. Journal of Nanostructure in Chemistry 6 (3):207–13. doi:10.1007/s40097-016-0189-y.
  • Mogoşanu, G. D., and A. M. Grumezescu. 2014. Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics 463 (2):127–36. doi:10.1016/j.ijpharm.2013.12.015.
  • Mokhena, T. C., M. J. Mochane, A. Mtibe, M. J. John, E. R. Sadiku, and J. S. Sefadi. 2020. Electrospun alginate nanofibers toward various applications: A review. Materials 13 (4):934. doi:10.3390/ma13040934.
  • Nazempour, M., D. Mehrabani, R. Mehdinavaz‐Aghdam, S. S. Hashemi, A. Derakhshanfar, S. Zare, M. Zardosht, J. Moayedi, and M. Vahedi. 2020. The effect of allogenic human wharton’s jelly stem cells seeded onto acellular dermal matrix in healing of rat burn wounds. Journal of Cosmetic Dermatology 19 (4):995–1001. doi:10.1111/jocd.13109.
  • Norhamidar, A. H., A. B. A. Bakar, and M. Mohamed. 2018. Phytochemical analysis and GC-MS profile of royal jelly from selected areas in Malaysia. Malaysian Applied Biology 47 (3):101–07.
  • Nosar, M. N., M. Salehi, S. Ghorbani, S. P. Beiranvand, A. Goodarzi, and M. Azami. 2016. Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: Influence of cellulose acetate concentration. Cellulose 23 (5):3239–48. doi:10.1007/s10570-016-1026-7.
  • Noshirvani, N., B. Ghanbarzadeh, C. Gardrat, M. R. Rezaei, M. Hashemi, C. Le Coz, and V. Coma. 2017. Cinnamon and ginger essential oils to improve antifungal. physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids 70:36–45. doi:10.1016/j.foodhyd.2017.03.015.
  • Okur, M. E., I. D. Karantas, Z. Şenyiğit, N. U. Okur, and P. I. Siafaka. 2020. Recent trends on wound management: new therapeutic choices based on polymeric carriers. Asian Journal of Pharmaceutical Sciences (6). doi:10.1016/j.ajps.2019.11.008.
  • Parham, S., A. Z. Kharazi, H. R. Bakhsheshi-Rad, H. Ghayour, A. F. Ismail, H. Nur, and F. Berto. 2020. Electrospun nano-fibers for biomedical and tissue engineering applications: A comprehensive review. Materials 13 (9):2153. doi:10.3390/ma13092153.
  • Pastor, C., L. Sánchez-González, M. Cháfer, A. Chiralt, and C. González-Martínez. 2010. Physical and antifungal properties of hydroxypropyl methylcellulose based films containing propolis as affected by moisture content. Carbohydrate Polymers 82 (4):1174–83. doi:10.1016/j.carbpol.2010.06.051.
  • Qin, Y. 2006. The characterization of alginate wound dressings with different fiber and textile structures. Journal of Applied Polymer Science 100 (3):2516–20. doi:10.1002/app.23668.
  • Rashtchian, M., A. Hivechi, S. H. Bahrami, P. B. Milan, and S. Simorgh. 2020. Fabricating alginate/poly (caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydrate Polymers 233:115873. doi:10.1016/j.carbpol.2020.115873.
  • Riaz, S., S. Malik, T. Hussain, M. Ashraf, F. Iftikhar, A. Younus, S. Abid, and A. Zahir. 2018. Development of antibacterial fibers and study on effect of guar-gum addition on properties of carboxymethyl cellulose (CMC)/alginate fibers. Mater Sci Eng 414:012020. doi:10.1088/1757-899X/414/1/012020.
  • Salehi, A. O. M., M. S. Nourbakhsh, M. Rafienia, A. Baradaran-Rafii, and S. H. Keshel. 2020. Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. International Journal of Biological Macromolecules 161:377–88. doi:10.1016/j.ijbiomac.2020.06.045.
  • Salehi, A. O. M., S. H. Keshel, F. Sefat, and L. Tayebi. 2021. Use of Polycaprolactone in corneal tissue engineering: A review. Materials Today Communications 102402. doi:10.1016/j.mtcomm.2021.102402.
  • Shaheen, T. I., A. Montaser, and S. Li. 2019. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. International Journal of Biological Macromolecules 121:814–21. doi:10.1016/j.ijbiomac.2018.10.081.
  • Soares, R. M., N. M. Siqueira, M. P. Prabhakaram, and S. Ramakrishna. 2018. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development Materials and Science Engineering:C . 92:969–82. doi:10.1016/j.msec.2018.08.004.
  • Sundaramurthi, D., U. M. Krishnan, and S. Sethuraman. 2014. Electrospun nanofibers as scaffolds for skin tissue engineering. Polymer Reviews 54 (2):348–76. doi:10.1080/15583724.2014.881374.
  • Xiao, M., and Frey, M.W., 2007. The role of salt on cellulose dissolution in ethylene diamine/salt solvent systems. Cellulose, 14(3):225–234. doi: 10.1007/s10570-007-9110-7.
  • Yabuuchi, K., Y. Tochigi, N. Mizoshita, K. Hanabusa, and T. Kato. 2007. Self-assembly of carbazole-containing gelators: Alignment of the chromophore in fibrous aggregates. Tetrahedron 63 (31):7358–65. doi:10.1016/j.tet.2007.03.121.
  • Yamin, F., F. Naddafiun, and S. Zohoori. 2021. Electrospinning of eucalyptus cellulose nano fiber and improving its properties by doping nano materials. Journal of Natural Fibers 1–10. doi:10.1080/15440478.2021.1932675.
  • Yassue-Cordeiro, P. H., P. Severino, E. M. Souto, C. M. P. Yoshida, and C. F. Da Silva. 2019. Natural polysaccharides in wound dressing applications. Natural Polysaccharides in Drug Delivery and Biomedical Applications 549–66. doi:10.1016/B978-0-12-817055-7.00024-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.