263
Views
4
CrossRef citations to date
0
Altmetric
Research Article

The Combined Effect of Banana Fiber and Fly Ash Reinforcements on the Mechanical Behavior of Polyester Composites

, , ORCID Icon &
Pages 11384-11403 | Published online: 22 Jan 2022

References

  • Adekomaya, O., T. Jamiru, R. Sadiku, and Z. Huan. 2017. Negative impact from the application of natural fibers. Journal of Cleaner Production 143:843–46. doi:10.1016/j.jclepro.2016.12.037.
  • Ahmaruzzaman, M. 2010. A review on the utilization of fly ash. Progress in Energy and Combustion Science 36 (4). 2010. doi:10.1016/j.pecs.2009.11.003.
  • Alavudeen, A., N. Rajini, S. Karthikeyan, M. Thiruchitrambalam, and N. Venkateshwaren. 2015. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: effect of woven fabric and random orientation. Materials & Design 66 (PA):246–57. doi:10.1016/j.matdes.2014.10.067.
  • Arrakhiz, F. Z., M. El Achaby, M. Malha, M. O. Bensalah, O. Fassi-Fehri, R. Bouhfid, K. Benmoussa, and A. Qaiss. 2013. Mechanical and thermal properties of natural fibers reinforced polymer composites: doum/low density polyethylene. Materials & Design 43:200–05. doi:10.1016/j.matdes.2012.06.056.
  • Arumuga Prabu, V., M. Uthayakumar, V. Manikandan, N. Rajini, and P. Jeyaraj. 2014. Influence of redmud on the mechanical, damping and chemical resistance properties of banana/polyester hybrid composites. Materials & Design 64:270–79. doi:10.1016/j.matdes.2014.07.020.
  • Balaji, A., R. Purushothaman, R. Udhayasankar, S. Vijayaraj, and B. Karthikeyan. 2020. Study on mechanical, thermal and morphological properties of banana fiber-reinforced epoxy composites. Journal of Bio- and Tribo-Corrosion 6 (2):60. doi:10.1007/s40735-020-00357-8.
  • Bhoopathi, R., M. Ramesh, and C. Deepa. 2014. Fabrication and property evaluation of banana-hemp-glass fiber reinforced composites. Procedia Engineering 97:2032–41. doi:10.1016/j.proeng.2014.12.446.
  • Buitrago, B., F. Jaramillo, and M. Gómez. 2015. Some properties of natural fibers (sisal, pineapple, and banana) in comparison to man-made technical fibers (aramide, glass, carbon). Journal of Natural Fibers 12 (4):357–67. doi:10.1080/15440478.2014.929555.
  • Candido, V. S., A. C. R. Da Silva, N. Tonini Simonassi, F. S. Da Luz, and S. Neves Monteiro. 2017. Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by charpy impact tests. Journal of Materials Research and Technology 6 (4):334–38. doi:10.1016/j.jmrt.2017.06.001.
  • Chandramohan, D., and A. John Presin Kumar. 2017. Experimental data on the properties of natural fiber particle reinforced polymer composite material. Data in Brief 13 (August):460–68. doi:10.1016/j.dib.2017.06.020.
  • Dennis, C., P. Joshi, L. Diels, P. M. Sarma, and D. Pant. 2015. Agriculture biomass in india: part 1. estimation and characterization. Resources, Conservation and Recycling 102 (July):39–48. doi:10.1016/j.resconrec.2015.06.003.
  • Essabir, H., M. O. Bensalah, D. Rodrigue, R. Bouhfid, and A. Qaiss. 2016a. Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: fibers and shell particles. Mechanics of Materials 93:134–44. doi:10.1016/j.mechmat.2015.10.018.
  • Essabir, H., R. Boujmal, M. Ouadi Bensalah, D. Rodrigue, R. Bouhfid, and A. El Kacem Qaiss. 2016b. Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mechanics of Materials 98 (July):36–43. doi:10.1016/j.mechmat.2016.04.008.
  • Farsi, M. 2017. Effect of Nano-SiO2 and bark flour content on the physical and mechanical properties of wood–plastic composites. Journal of Polymers and the Environment 25 (2):308–14. doi:10.1007/s10924-016-0813-4.
  • Firdaus, S. M., and M. Mariatti. 2012. Fabrication and characterization of nano filler-filled epoxy composites for underfill application. Journal of Materials Science: Materials in Electronics 23 (7):1293–99. doi:10.1007/s10854-011-0587-3.
  • Gilja, V., Z. Katancic, L. Kratofil Krehula, V. Mandic, and Z. Hrnjak-Murgic. 2019. Eflciency of TiO2 catalyst supported by modified waste fly ash during photodegradation of RR45 dye. IEEE Journal of Selected Topics in Quantum Electronics 26 (1):292–300. doi:10.1515/secm-2019-0017.
  • Gokul, K., T. Ram Prabhu, and T. Rajasekaran. 2017. Processing and evaluation of mechanical properties of sugarcane fiber reinforced natural composites. Transactions of the Indian Institute of Metals 70 (10):2537–46. doi:10.1007/s12666-017-1116-8.
  • Gopalan, V., S. Kumar Sharma, A. Kumar Jangid, V. Pragasam, N. Satonkar, and P. Chinnaiyan. 2020. Investigations on tensile and flexural characteristics of fly ash and banana fiber-reinforced epoxy matrix composites. Engineering Transactions 68 (1):89–101. doi:10.24423/EngTrans.1086.20200219.
  • Guhanathan, S., M. Saroja Devi, and V. Murugesan. 2001. Effect of coupling agents on the mechanical properties of fly ash/polyester particulate composites. Journal of Applied Polymer Science 82 (7):1755–60. doi:10.1002/app.2017.
  • Helena, B., R. F. de Matos, J. A. de Souzade Souza, D. de A. Lima, F. T. C. de Souzade Souza, and E. Longhinotti. 2013. Pseudo-stem banana fibers: characterization and chromium removal. Orbital: The Electronic Journal of Chemistry 5 (3):164–71. Accessed March 19 2021.https://go.gale.com/ps/i.do?p=AONE&sw=w&=19846428&v=2.1&it=r&id=GALE%7CA368073852&sid=googleScholar&linkaccess=fulltext
  • Ho, M. P., K. Tak Lau, H. Wang, and D. Hui. 2015. Improvement on the Properties of Polylactic Acid (PLA) using bamboo charcoal particles. Composites Part B: Engineering 81 (July):14–25. doi:10.1016/j.compositesb.2015.05.048.
  • Huda, M. S., L. T. Drzal, A. K. Mohanty, and M. Misra. 2007. The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Composites Part B: Engineering 38 (3):367–79. doi:10.1016/j.compositesb.2006.06.010.
  • Ibrahim, M. M., A. Dufresne, W. K. El-Zawawy, and F. A. Agblevor. 2010. Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydrate Polymers 81 (4):811–19. doi:10.1016/j.carbpol.2010.03.057.
  • Ihueze, C. C., C. E. Okafor, and C. I. Okoye. 2015. Natural fiber composite design and characterization for limit stress prediction in multiaxial stress state. Journal of King Saud University - Engineering Sciences 27 (2):193–206. doi:10.1016/j.jksues.2013.08.002.
  • James, J., and P. Pandian. 2015. Soil stabilization as an avenue for reuse of solid wastes: a review. Acta Technica Napocensis: Civil Engineering & Architecture 58 (1): 50–76.
  • Jha, K., Y. K. Tyagi, and A. Singh Yadav. 2018. Mechanical and thermal behaviour of biodegradable composites based on polycaprolactone with pine cone particle. Sadhana - Academy Proceedings in Engineering Sciences 43 (9):1–5. doi:10.1007/s12046-018-0822-1.
  • Khalifa, M., S. Anandhan, G. Wuzella, H. Lammer, and A. Raj Mahendran. 2020. Thermoplastic polyurethane composites reinforced with renewable and sustainable fillers–a review. Polymer-Plastics Technology and Materials 59 (16): 1751–1769. doi:10.1080/25740881.2020.1768544.
  • Khan, Z., B. F. Yousif, and M. Islam. 2017. Fracture behaviour of bamboo fiber reinforced epoxy composites. Composites Part B: Engineering 116:186–99. doi:10.1016/j.compositesb.2017.02.015.
  • Koto, N., and B. Soegijono. 2019. Effect of rice husk ash filler of resistance against of high-speed projectile impact on polyester-fiberglass double panel composites. International Symposium on Frontier of Applied Physics IOP Conf. Series: Journal of Physics: Conf. Series 1191:12058. doi:10.1088/1742-6596/1191/1/012058.
  • Krishna, K. V., and K. Kanny. 2016. The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Composites Part B: Engineering 104:111–17. doi:10.1016/j.compositesb.2016.08.010.
  • Ku, H., H. Wang, N. Pattarachaiyakoop, and M. Trada. 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering 42 (4):856–73. doi:10.1016/j.compositesb.2011.01.010.
  • Kulkarni, M. B., S. Radhakrishnan, N. Samarth, and P. A. Mahanwar. 2019. Structure, mechanical and thermal properties of polypropylene based hybrid composites with banana fiber and fly ash. Materials Research Express 6 (7):075318. doi:10.1088/2053-1591/ab12a3.
  • Kulkarni, S. M., and Kishore. 2002. Effects of surface treatments and size of fly ash particles on the compressive properties of epoxy based particulate composites. Journal of Materials Science 37 (20):4321–26. doi:10.1023/A:1020648418233.
  • Kumar, R., V. Choudhary, S. Mishra, I. Varma, and H. Education Press. 2008. Banana fiber-reinforced biodegradable soy protein composites Frontiers of Chemistry in China 3 (3):243–50. doi:10.1007/s11458-008-0069-1.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and M. Jawaid. 2018a. Study on characterization of furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers 181:650–58. doi:10.1016/j.carbpol.2017.11.099.
  • Manimaran, R., I. Jayakumar, R. Mohammad Giyahudeen, and L. Narayanan. 2018b. Mechanical properties of fly ash composites—a review. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 40 (8):887–93. Taylor and Francis Inc. doi:10.1080/15567036.2018.1463319.
  • Mittal, V., R. Saini, and S. Sinha. 2016. Natural fiber-mediated epoxy composites - a review. Composites Part B: Engineering 99:425–35. doi:10.1016/j.compositesb.2016.06.051.
  • Mohan, K., and T. Rajmohan. 2017. Fabrication and characterization of MWCNT filled hybrid natural fiber composites. Journal of Natural Fibers 14 (6):864–74. doi:10.1080/15440478.2017.1300115.
  • Monteiro, S. N., V. S. Candido, F. O. Braga, L. T. Bolzan, R. P. Weber, and J. W. Drelich. 2016. Sugarcane bagasse waste in composites for multilayered armor. European Polymer Journal 78:173–85. doi:10.1016/j.eurpolymj.2016.03.031.
  • Narayanan, V., and A. Elayaperumal. 2010. Banana fiber reinforced polymer composites - a review journal of reinforced plastics and. Journal of Reinforced Plastics and Composites 29 (August):2387–96. doi:10.1177/0731684409360578.
  • Neher, B., M. A. Gafur, M. Abdullah Al-Mansur, M. R. B. Md, M. R. Qadir, and F. Ahmed. 2014. Investigation of the surface morphology and structural characterization of palm fiber reinforced acrylonitrile butadiene styrene (PF-ABS) composites. Materials Sciences and Applications 5 (6):378–86. doi:10.4236/msa.2014.56043.
  • Otto, G. P., M. Pereira Moisés, G. Carvalho, A. Wellington Rinaldi, J. Carla Garcia, E. Radovanovic, and S. Luciana Fávaro. 2017. Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Composites Part B: Engineering 110:459–65. doi:10.1016/j.compositesb.2016.11.035.
  • Perissé, F., and D. Lopes. 2017. Comparison between tensile behavior of epoxy and polyester matrix composites reinforced with eucalyptus fibers. Integrative Medicine Research 6 (4):406–10. doi:10.1016/j.jmrt.2017.08.002.
  • Pickering, K. L., M. G. A. Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites. Part A, Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Plessis, P., T. Ojumu, and L. Petrik. 2013. Waste minimization protocols for the process of synthesizing zeolites from South African coal fly ash. Materials 6 (5):1688–703. doi:10.3390/ma6051688.
  • Pothan, Laly A., Sabu Thomas, and N. R. Neelakantan. 1997. Short banana fiber reinforced polyester composites: mechanical, failure and aging characteristics.” Journal of reinforced plastics and composites 16 (8): 744–765. 10.1177/073168449701600806.
  • Qaiss, A., R. Bouhfid, and H. Essabir. 2015. Characterization and use of coir, almond, apricot, argan, shells, and wood as reinforcement in the polymeric matrix in order to valorize these products. In agricultural biomass based potential materials, 305–339. Springer, Cham. doi:10.1007/978-3-319-13847-3_15.
  • Rajesh, M., and J. Pitchaimani. 2017. Mechanical properties of natural fiber braided yarn woven composite: comparison with conventional yarn woven composite. Journal of Bionic Engineering 14 (1):141–50. doi:10.1016/S1672-6529(16)60385-2.
  • Rajesh, M., J. Pitchaimani, and N. Rajini. 2016. Free vibration characteristics of banana/sisal natural fibers reinforced hybrid polymer composite beam. Procedia Engineering 144:1055–59. doi:10.1016/j.proeng.2016.05.056.
  • Rajini, N., K. Mayandi, M. Manoj Prabhakar, S. Siengchin, C. B. Nadir Ayrilmis, and S. O. Ismail. 2021. Tribological properties of cyperus pangorei fibre reinforced polyester composites(friction and wear behaviour of cyperus pangorei fibre/polyester composites). Journal of Natural Fibers 18 (2):261–73. doi:10.1080/15440478.2019.1621232.
  • Ramesh, M., T. Sri Ananda Atreya, U. S. Aswin, H. Eashwar, and C. Deepa. 2014. Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Engineering 97:563–72. doi:10.1016/j.proeng.2014.12.284.
  • Ratna Prasad, A. V., and K. Mohana Rao. 2011. Mechanical properties of natural fibre reinforced polyester composites: jowar, sisal and bamboo. Materials & Design 32 (8–9):4658–63. doi:10.1016/j.matdes.2011.03.015.
  • Rodríguez, L., J. Carlos, A. Cardona, and E. O. Carlos. 2016. Water uptake, chemical characterization, and tensile behavior of modified banana-plantain fiber and their polyester composites. Polymer Composites 37 (10):2960–73. doi:10.1002/pc.23493.
  • Rojo, E., M. V. Alonso, M. Oliet, B. Del Saz-Orozco, and F. Rodriguez. 2015. Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Composites Part B: Engineering 68:185–92. doi:10.1016/j.compositesb.2014.08.047.
  • Rubio-Lopez, A., T. Hoang, and C. Santiuste. 2016. Constitutive model to predict the viscoplastic behaviour of natural fibres based composites. Composite Structures 155:8–18. doi:10.1016/j.compstruct.2016.08.001.
  • Saba, N., M. Jawaid, O. Y. Alothman, and M. T. Paridah. 2016. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials 106:149–59. doi:10.1016/j.conbuildmat.2015.12.075.
  • Sabzoi, N., A. Jadhav, S. Saeed Qureshi, M. T. H. S. Humair Ahmed Baloch, N. M. Mubarak, G. Griffin, S. Madapusi, A. Tanksale, and M. Imran Ahamed. 2019. Synthesis and characterization of polylactide/rice husk hydrochar composite. Scientific Reports 9 (1). doi: 10.1038/s41598-019-41960-1.
  • Sekar, S., S. Suresh Kumar, S. Vigneshwaran, and G. Velmurugan. 2020. Evaluation of mechanical and water absorption behavior of natural fiber-reinforced hybrid biocomposites. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2020.1788487.
  • Shahroze, Rao Muhammad, Mohamad Ridzwan Ishak, Mohd Sapuan Salit, Zulkiflle Leman, Mohammad Asim, and Muthukumar Chandrasekar. ”Effect of organo-modified nanoclay on the mechanical properties of sugar palm fiber-reinforced polyester composites.” BioResources 13, no. 4 (2018): 7430–7444
  • Sharma, A. K., and P. A. Mahanwar. 2010. Effect of particle size of fly ash on recycled poly (ethylene terephthalate)/fly ash composites 14 (1): 53–64. doi: 10.1007/s12588-010-0006-2.
  • Shivamurthy, B., B. H. S. Thimmappa, and J. Monteiro. 2020. Sliding wear, mechanical, flammability, and water intake properties of banana short fiber/al(OH)3/epoxy composites. Journal of Natural Fibers 17 (3):337–45. doi:10.1080/15440478.2018.1492489.
  • Srivastava, V. K., and P. S. Shembekar. 1990. Tensile and fracture properties of epoxy resin filled with flyash particles. Journal of Materials Science 25 (8):3513–16. doi:10.1007/BF00575379.
  • Subramanya, R., K. Gundappa Satyanarayana, and B. Shetty Pilar. 2017. Evaluation of structural, tensile and thermal properties of banana fibers. Journal of Natural Fibers 14 (4):485–97. doi:10.1080/15440478.2016.1212771.
  • Sukanya, S., and R. V. S. Kothapalli. 2018. Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. Journal of Polymers and the Environment 26 (1):200–13. doi:10.1007/s10924-017-0938-0.
  • Sullins, T., S. Pillay, A. Komus, and H. Ning. 2017. Hemp fiber reinforced polypropylene composites: the effects of material treatments. Composites Part B: Engineering 114:15–22. doi:10.1016/j.compositesb.2017.02.001.
  • Sumesh, K. R., and K. Kanthavel. 2020. Abrasive water jet machining of sisal/pineapple epoxy hybrid composites with the addition of various fly ash filler. Materials Research Express 7 (3):35303. doi:10.1088/2053-1591/ab7865.
  • Sundarakannan, R., V. Arumugaprabu, V. Manikandan, and S. Vigneshwaran. 2019. Mechanical property analysis of biochar derived from cashew nut shell waste reinforced polymer matrix. Materials Research Express 6 (12):125349. doi:10.1088/2053-1591/ab6197.
  • Suresh Kumar, S. M., D. Duraibabu, and K. Subramanian. 2014. Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Materials & Design 59:63–69. doi:10.1016/j.matdes.2014.02.013.
  • Suresh, S., D. Sudhakara, and B. Vinod. 2020. Investigation on industrial waste eco-friendly natural fiber-reinforced polymer composites. Journal of Bio- and Tribo-Corrosion 6 (2):40. doi:10.1007/s40735-020-00339-w.
  • Suriati, G., M. Mariatti, and A. Azizan. 2011. Effects of filler shape and size on the properties of silver filled epoxy composite for electronic applications. Journal of Materials Science: Materials in Electronics 22 (1):56–63. doi:10.1007/s10854-010-0082-2.
  • Thakur, V. K., M. Kumari Thakur, and R. Kumar Gupta. 2014. Review: raw natural fiber-based polymer composites. International Journal of Polymer Analysis and Characterization 19 (3):256–71. doi:10.1080/1023666X.2014.880016.
  • Venkateshwaran, N., A. ElayaPerumal, A. Alavudeen, and M. Thiruchitrambalam. 2011. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Materials & Design 32 (7):4017–21. doi:10.1016/j.matdes.2011.03.002.
  • Vigneshwaran, S., M. Uthayakumar, and V. Arumugaprabu. 2020. Potential use of industrial waste-red mud in developing hybrid composites: a waste management approach. Journal of Cleaner Production 276 (December):124278. doi:10.1016/j.jclepro.2020.124278.
  • Vigneshwaran, S., M. Uthayakumar, V. Arumugaprabu, and R. Deepak Joel Johnson. 2018. Influence of filler on erosion behavior of polymer composites: a comprehensive review. Journal of Reinforced Plastics and Composites 37 (15):1011–19. doi:10.1177/0731684418777111.
  • Vigneshwaran, S., R. Sundarakannan, K. M. John, R. Deepak Joel Johnson, K. Arun Prasath, S. Ajith, V. Arumugaprabu, and M. Uthayakumar. 2020. Recent advancement in the natural fiber polymer composites: a comprehensive review. Journal of Cleaner Production Elsevier Ltd. doi:10.1016/j.jclepro.2020.124109.
  • Vimalanathan, P., N. Venkateshwaran, S. P. Srinivasan, V. Santhanam, and M. Rajesh. 2018. Impact of surface adaptation and acacia nilotica biofiller on static and dynamic properties of sisal fiber composite. International Journal of Polymer Analysis and Characterization 23 (2):99–112. doi:10.1080/1023666X.2017.1387689.
  • Vinícius, M., F. Ferreira, A. Carolina, C. Neves, C. G. De Oliveira, F. Perissé, F. M. Margem, C. M. Fontes Vieira, S. N. Monteiro. 2017. Thermogravimetric characterization of polyester fibers. Integrative Medicine Research 6 (4):396–400. doi:10.1016/j.jmrt.2017.09.002.
  • Vivek, S., and K. Kanthavel. 2019. Effect of bagasse ash filled epoxy composites reinforced with hybrid plant fibres for mechanical and thermal properties. Composites Part B: Engineering 160 (March):170–76. doi:10.1016/j.compositesb.2018.10.038.
  • Willis, M. R., and I. Masters. 2003. The effect of filler loading and process route on the three-point bend performance of waste based composites. Composite Structures 62 (3–4):475–79. doi:10.1016/j.compstruct.2003.09.021.
  • Zakikhani, P., R. Zahari, M. T. H. Sultan, and D. L. Majid. 2014. Extraction and preparation of bamboo fibre-reinforced composites. Materials & Design 63:820–28. doi:10.1016/j.matdes.2014.06.058.
  • Živković, I., C. Fragassa, A. Pavlović, and T. Brugo. 2017. Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Composites Part B: Engineering 111:148–64. doi:10.1016/j.compositesb.2016.12.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.