355
Views
3
CrossRef citations to date
0
Altmetric
Review

Spider Silk and the Silk of Egg Sacs with its Astonishing Concealed Attributes: A Review

ORCID Icon &
Pages 11492-11506 | Published online: 21 Jan 2022

References

  • Abraham, A., M. M. Joseph, and M. Minu. 2020. ANTIMICROBIAL ACTIVITIES OF NATURAL AND RECOMBINANT SPIDER SILK – A REVIEW UTTAR PRADESH JOURNAL OF ZOOLOGY . 41 (24):106–12.
  • Altman, G. H., F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, L. Helen, J. Richmond, and D. L. Kaplan. 2003. Silk-based biomaterials Biomaterials . 24:401–16.
  • Andersson, M., L. Holm, Y. Ridderstraìšle, J. Johansson, and A. Rising. 2013. Morphology and composition of the spider major ampullate gland and dragline silk. Biomacromolecules 14 (8):2945–52. doi:10.1021/bm400898t.
  • Arai, T., G. Freddi, R. Innocenti, and M. Tsukada. 2004. Biodegradation of bombyx mori silk fibroin fibres and films. Journal of Applied Polymer Science 91 (4):2383–90. doi:10.1002/app.13393.
  • Ashutosh, B., S. Kanti Chowdhury, S. Dey, J. Christakiran Moses, and B. B. Mandal. 2019. Silk: A promising biomaterial opening new vistas towards affordable healthcare solutions. Journal of the Indian Institute of Science 99 (3):445–87. doi:10.1007/s41745-019-00114-y.
  • Austin, A. D. 1985. The function of spider egg sacs in relation to parasitoids and predators, with special reference to the australian fauna. Journal of Natural History 19 (2):359–76. doi:10.1080/00222938500770261.
  • Babb, Paul L., Nicholas F. Lahens, Sandra M. Correa-Garhwal, David N. Nicholson, Eun Ji Kim, John B. Hogenesch, and Matjaž Kuntneret al, 2017. “The Nephila clavipes Genome Highlights the Diversity of Spider Silk Genes and Their Complex Expression.” Nature Genetics 49 (6): 895–903 https://doi.org/10.1038/ng.3852. .
  • Babczyńska, A., S. Sułowicz, E. Talik, M. Hermyt, A. Bednarek, M. Sawadro, and A. Molenda. 2019. Sterile capsule–egg cocoon covering constitutes an antibacterial barrier for spider parasteatoda tepidariorum embryos. Physiological and Biochemical Zoology 92 (1):115–24. doi:10.1086/701390.
  • Barnes, J. K., L. E. Higginsjk, C. W. Sabrosky, and J. K. Barnes. 1992. Life histories of pseudogaurax species (diptera: chloropidae), descriptions of two new species, and ecology of nephila clavipes (linnaeus) (araneae: tetragnathidae) egg predation. Journal of Natural History 26 (4):823–34. doi:10.1080/00222939200770501.
  • Barrantes, G. 2008. Courtship behavior and copulation in tengella radiata (araneae, tengellidae). Journal of Arachnology 36 (3):606–08. doi:10.1636/St07-13.1.
  • Brongers, P. 2021. The possible role of liquid-liquid phase separation as an intermediate step in spider silk assembly. https://fse.studenttheses.ub.rug.nl/24415/1/mNANO_2021_BrongersPJ.pdf
  • Bukowski, T. C., and T. E. Christenson. 1997. Natural history and copulatory behavior of the spiny orbweaving spider micrathena gracilis (araneae, araneidae). Journal of Arachnology 25 (3):307–20. doi:10.2307/3705597.
  • Chaw, R., M. Collin, M. Wimmer, K. Leigh Helmrick, and Cheryl. Y. 2018. “Egg Case Silk Gene Sequences from Argiope Spiders: Evidence for Multiple Loci and a Loss of Function between Paralogs.” G3: Genes, Genomes, Genetics 8 (1): 231–38. https://doi.org/10.1534/g3.117.300283.
  • Christenson, T. E., and P. A. Wenzel. 1980. Egg-laying of the golden silk spider, nephila clavipes l. (araneae, araneidae): functional analysis of the egg sac. Animal Behaviour 28 (4):1110–18. doi:10.1016/S0003-3472(80)80099-6.
  • Collin, M. A., T. H. Clarke, N. A. Ayoub, and C. Y. Hayashi. 2016. Evidence from Multiple Species that Spider Silk Glue Component ASG2 is a Spidroin. Scientific reports, 6(1): doi:10.1038/srep21589.
  • Comstock, J. H. 1912. The spider book: a manual for the study of the spiders and their near relatives, the scorpions, pseudoscorpions, whip-scorpions, harvestmen, and other members of the class arachnids, found in america north of mexico, with analytical keys for their classification and popular accounts of their habits. Vol. 16. New York: Doubleday & Doran: Doubleday Page 729 .
  • Correa-Garhwal, S. M., R. C. Chaw, T. H. Clarke, N. A. Ayoub and C. Y. Hayashi. 2017. Silk gene expression of theridiid spiders: implications for male-specific silk use. Zoology, 122: 107–114. doi:10.1016/j.zool.2017.04.003.
  • Eberhard, W. G. 1979. Rates of egg production by tropical spiders in the field. Biotropica 11 (4):292. doi:10.2307/2387921.
  • Eberhard, W. G. 1980. The natural history and behavior of the bolas spider mastophora dizzydeani sp. ν. (araneidae). Psyche (New York) 87 (3–4):143–69. doi:10.1155/1980/81062.
  • Eberhard, W. G. 2010. Possible functional significance of spigot placement on the spinnerets of spiders. Journal of Arachnology 38 (3):407–14. doi:10.1636/b09-97.1.
  • Eberhard, W. 2003. Substitution of silk stabilimenta for egg sacs by allocyclosa bifurca (araneae: araneidae) suggests that silk stabilimenta function as camouflage devices. Behaviour 140 (7):847–68. doi:10.1163/156853903770238346.
  • Emiliano, L., A. Marchioro, M. Isaia, M. J. Buehler, and N. M. Pugno. 2012. Evidence of the most stretchable egg sac silk stalk, of the european spider of the year meta menardi. PLoS ONE 7 (2):1–12. doi:10.1371/journal.pone.0030500.
  • Ewer, R. F. 1972. The devices in the web of the west African spider argiope flavipalpis. Journal of Natural History 6 (2):159–67. doi:10.1080/00222937200770151.
  • Foelix, R. F. 2011. Biology of Spiders. New York: Oxford University Press.
  • Fritz, V., and D. P. Knight. 2001. Liquid crystalline spinning of spider silk. Nature 410 (6828):541–48. doi:10.1038/35069000.
  • Gellynck, K., P. Verdonk, R. Forsyth, K. Fredrik Almqvist, E. Van Nimmen, T. Gheysens, J. Mertens, L. Van Langenhove, P. Kiekens, and G. Verbruggen. 2008. Biocompatibility and biodegradability of spider egg sac silk. Journal of Materials Science. Materials in Medicine 19 (8):2963–70. doi:10.1007/s10856-007-3330-0.
  • Gheysens, T., L. Beladjal, K. Gellynck, E. Van Nimmen, L. Van Langenhove, and J. Mertens. 2005. Egg Sac structure of zygiella x-notata (arachnida, araneidae). Journal of Arachnology 33 (2):549–57. doi:10.1636/CS05-12.1.
  • Gilbert, B., L. Sandoval, C. Sánchez-Quirós, P.-P. Bitton, and S. M. Doucet. 2013. Variation and possible function of egg sac coloration in spiders. The Journal of Arachnology 41 (3):342–48. doi:10.1636/B12-93.1.
  • Guarisco, H. 2001. Description of the egg sac of mimetus notius (araneae, mimetidae) and a case of egg predation by phalacrotophora epeirae (diptera, phoridae). Journal of Arachnology 29(2):267–69. (2001)029[0267:DOTESO]2.0.CO;2. doi:10.1636/0161-8202.
  • Herberstein, M. E., C. L. Craig, J. A. Coddington, and M. A. Elgar. 2000. The functional significance of silk decorations of orb-web spiders: a critical review of the empirical evidence. Biological Reviews 75 (4):649–69. doi:10.1111/j.1469-185X.2000.tb00056.x.
  • Hieber, C. S. 1985. The ‘insulation’ layer in the cocoons of argiope aurantia (araneae: araneidae). Journal of Thermal Biology 10 (3):171–75. doi:10.1016/0306-4565(85)90023-3.
  • Hieber, C. S. 1992. The Role of spider cocoons in controlling desiccation. Oecologia 89 (3):442–48. doi:10.1007/bf00317424.
  • Hingston, R. W. G. 1927. Protective devices in spiders’ snares, with a description of seven new species of orb–weaving spiders. In Proceedings of the Zoological Society of London, 97 ( 2): 259–93. Oxford, UK: Blackwell Publishing Ltd.
  • Hinman, M. B., J. A. Jones, and R. V. Lewis. 2000. Chemistry unveils molecular wizardry in san francisco: ribbons make tough stuff. American Chemical Physical Review 18 (September):425–27. E (in Press) 37 Service, R.F.
  • Huber, B. A., and J. Wunderlich. 2006. Fossil and extant species of the genus leptopholcus in the dominican republic, with the first cases of egg-parasitism in pholcid spiders (araneae: pholcidae). Journal of Natural History 40 (41–43):2341–60. doi:10.1080/00222930601051196.
  • Humphreys, W. F. 1975. The influence of burrowing and thermoregulatory behaviour on the water relations of geolycosa godeffroyi (araneae: lycosidae), an Australian wolf spider. Oecologia 21 (4):291–311. doi:10.1007/BF00345823.
  • Humphreys, W. F. 1983. The surface of spiders’ eggs. Journal of Zoology 200 (3):303–16. doi:10.1111/j.1469-7998.1983.tb02312.x.
  • Jiang, P., C. Guo, L. Taiyong, Y. Xiao, X. Liao, and B. Zhou. 2011. Structure, composition and mechanical properties of the silk fibres of the egg case of the joro spider, nephila clavata (araneae, nephilidae). Journal of Biosciences 36 (5):897–910. doi:10.1007/s12038-011-9165-3.
  • Khandelwal, S., and V. K. Sharma. 2014. Description of Egg Laying Pattern and Egg Sac of Steatoda grossa (koch, 1838). Journal of Entomology and Zoology Studies 2 (5):259–61.
  • Kiseleva, A. P., P. V. Krivoshapkin, and E. F. Krivoshapkina. 2020. Recent advances in development of functional spider silk-based hybrid materials. Frontiers in Chemistry 8 (June):1–20. doi:10.3389/fchem.2020.00554.
  • Kluge, J. A., O. Rabotyagova, G. G. Leisk, and D. L. Kaplan. 2008. Spider silks and their applications. Trends in Biotechnology 26 (5):244–51. doi:10.1016/j.tibtech.2008.02.006.
  • Lammel, A., M. Schwab, M. Hofer, G. Winter, and T. Scheibel. 2011. Recombinant spider silk particles as drug delivery vehicles. Biomaterials 32 (8):2233–40. doi:10.1016/j.biomaterials.2010.11.060.
  • Lewis, R. V. 2006. Spider silk: ancient ideas for new biomaterials. Chemical Reviews 106 (9):3762–74. doi:10.1021/cr010194g.
  • Lin, T. Y., H. Masunaga, R. Sato, A. D. Malay, K. Toyooka, T. Hikima, and K. Numata. 2017. Liquid crystalline granules align in a hierarchical structure to produce spider dragline microfibrils. Biomacromolecules 18 (4):1350–55. doi:10.1021/acs.biomac.7b00086.
  • Lin, Z., Q. Deng, X. Yang Liu, and D. Yang. 2013. Engineered large spider eggcase silk protein for strong artificial fibres. Advanced Materials 25 (8):1216–20. doi:10.1002/adma.201204357.
  • Litvinov, S. 2018. SDPD simulation of spider silk formation state of the art. Computational Science and Engineering Laboratory, ETH Zurich, Switzerland. 1–13. https://n.ethz.ch/~lisergey/spider.pdf
  • Maheshwari, N. R., and M. Zumberlal Chopda. 2018. Review on Spider Silk and Its Applications. Indian Journal of Entomology 80 (3):816–21.
  • Makover, V., Z. Ronen, Y. Lubin, and I. Khalaila. 2019. Eggshell spheres protect brown widow spider (latrodectus geometricus) eggs from bacterial infection. Journal of the Royal Society Interface 16 (150):1–10. doi:10.1098/rsif.2018.0581.
  • McCook, H. C. 1889. American spiders and their spinningwork: a natural history of the orbweaving spiders of the united states with special regard to their industry and habits. Vol. 1. Philadelphia: Academy of Natural Sciences of Philadelphia. doi:10.5962/bhl.title.2681.
  • Mikayla, S., C. Larracas, S. Dyrness, R. Hekman, C. La Mattina-Hawkins, T. Rabara, W. Wilson, and C. A. Vierra. 2021. Egg case protein 3: a constituent of black widow spider tubuliform silk. Molecules 26 (16):1–10. doi:10.3390/molecules26165088.
  • Moon, M. 2003. Fine structural analysis of the cocoon silk production in the garden spider, argiope aurantia. Korean Journal of Biological Sciences 7 (1):35–41. doi:10.1080/12265071.2003.9647680.
  • Moya, J., R. Quesada, G. Barrantes, W. Eberhard, I. Escalante, C. Esquivel, A. Rojas, E. Triana, and A. Arias. 2010. Egg sac construction by folding dead leaves in pozonia nigroventris and micrathena sp. (araneae: araneidae). Journal of Arachnology 38 (2):371–73. doi:10.1636/Hi09-74.1.
  • Opell, B. D. 1984. Eggsac differences in the spider family uloboridae (arachnida: araneae). Transactions of the American Microscopical Society 103 (2):122–29. doi:10.2307/3226234.
  • Parent, L. R., D. Onofrei, X. Dian, D. Stengel, J. D. Roehling, J. Bennett Addison, C. Forman, S. A. Amin, B. R. Cherry, J. L. Yarger, et al. 2018. Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks. Proceedings of the National Academy of Sciences of the United States of America 115 (45):11507–12. doi:10.1073/pnas.1810203115.
  • Ramirez, M. G., A. C. Achekian, C. R. Coverley, R. M. Pierce, S. S. Eiman, and M. M. Wetkowski. 2010. Male remating success and the frequency of copulatory plugs in the green lynx spider peucetia viridan (araneae, oxyopidae). Psyche (London) 2010:1–10. doi:10.1155/2010/602897.
  • Riechert, S. E. 1981. The consequences of being territorial: spiders, a case study. The American Naturalist 117 (6):871–92. doi:10.1086/283776.
  • Rising, A., and J. Johansson. 2015. Toward spinning artificial spider silk. Nature Chemical Biology 11 (5):309–15. doi:10.1038/nchembio.1789.
  • Robinson, M. H., and B. Robinson. 1973. Ecology and behavior of the giant wood spider nephila maculata (fabricius) in new guinea. Smithsonian Contributions to Zoology 149:1–76. doi:10.5479/si.00810282.149.
  • Robinson, M. H., and B. Robinson. 1976. The ecology and behavior of nephila maculata: a supplement. Smithsonian Contributions to Zoology 218:1–22. doi:10.5479/si.00810282.218.
  • Römer, L., and T. Scheibel. 2008. The elaborate structure of spider silk: structure and function of a natural high performance fibre. Prion 2 (4):154–61. doi:10.4161/pri.2.4.7490.
  • Saravanan, D. 2006. “Spider Silk - Structure, Properties and Spinning.” Journal of Textile and Apparel, Technology and Management 5 (1): 1–20.
  • Simon, E. 1895. Historie naturelle des Araigne´es. Paris: Roset.
  • Stellwagen, S. D. and R. L. Renberg. 2019. Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation. G3 Genes|Genomes|Genetics, 9(6): 1909–1919. https://doi.org/10.1534/g3.119.400065
  • Stengel, D., J. Bennett Addison, D. Onofrei, N. Uyen Huynh, G. Youssef, and P. H. Gregory. 2021. Hydration-induced β-sheet crosslinking of α-helical-rich spider prey-wrapping silk. Advanced Functional Materials 31:13. doi:10.1002/adfm.202007161.
  • Stubbs, D. G., E. K. Tillinghast, M. A. Townley, and N. A. Cherim. 1992. Fibrous Composite Structure in a Spider Silk. Naturwissenschaften 79 (5):231–34. doi:10.1007/BF01227136.
  • Tian M and Lewis R V. (2005). Molecular Characterization and Evolutionary Study of Spider Tubuliform (Eggcase) Silk ProteinMolecular Characterization and Evolutionary Study of Spider Tubuliform (Eggcase) Silk. Biochemistry, 44(22), 8006–8012. 10.1021/bi050366u10.1021/bi050366u.s001
  • Toft, S., and Y. Lubin. 2018. The egg sac of benoitia lepida (araneae: agelenidae): structure, placement and the function of its layers. The Journal of Arachnology 46 (1):35–39. doi:10.1636/JoA-S-17-020.1.
  • Tokareva, O., M. Jacobsen, M. Buehler, J. Wong, and D. L. Kaplan. 2013. Structure – function – property – design interplay in biopolymers : spider. Acta Biomaterialia 10 (4):1612–26. doi:10.1016/j.actbio.2013.08.020.
  • Townley, M. A., and D. Harms. 2020. Hers and his: Silk glands used in egg sac construction by female spiders potentially repurposed by a ‘modern’male spider. Scientific Reports 10 (1):1–10. doi:10.1038/s41598-020-63521-7.
  • Townley, M. A., E. K. Tillinghast, and C. D. Neefus. 2006. Changes in composition of spider orb web sticky droplets with starvation and web removal, and synthesis of sticky droplet compounds. Journal of Experimental Biology 209 (8):1463–86. doi:10.1242/jeb.02147.
  • Vasanthavada K., X. Hu, A. M. Falick, C. La Mattina, A. M. F. Moore, P. R. Jones, R. Yee, R. Reza, T. Tuton and C. Vierra. 2007. Aciniform Spidroin, a Constituent of Egg Case Sacs and Wrapping Silk Fibers from the Black Widow Spider Latrodectus hesperus. Journal of Biological Chemistry, 282(48): 35088–35097. doi:10.1074/jbc.M705791200.
  • Vierra, C., Y. Hsia, E. Gnesa, S. Tang, and F. Jeffery. 2011. Spider silk composites and applications. Metal, Ceramic and Polymeric Composites for Various Uses 303–24. doi:10.5772/22894.
  • Vollrath, F., B. Madsen, and Z. Shao. 2001. The effect of spinning conditions on the mechanics of a spider’s dragline silk. Proceedings of the Royal Society B: Biological Sciences. Proceedings of the Royal Society B: Biological Sciences, 268 ( 1483): 2339–46. doi:10.1098/rspb.2001.1590.
  • Wang, K., R. Wen, Q. Jia, X. Liu, J. Xiao and Q. Meng. 2019. Analysis of the Full-Length Pyriform Spidroin Gene Sequence. Genes, 10(6): 1–14, 425. doi:10.3390/genes10060425.
  • Wawer, W., and A. Kostro-Ambroziak. 2016. Egg sac parasitism: how important are parasitoids in the range expansion of the wasp spider argiope bruennichi? Journal of Arachnology 44 (2):247–50. doi:10.1636/P15-65.
  • Whaite, A. D., T. Wang, J. Macdonald, S. F. Cummins, and P. L. Ho. 2018. Major ampullate silk gland transcriptomes and fibre proteomes of the golden orb-weavers, Nephila plumipes and Nephila pilipes (Araneae: Nephilidae). PLoS ONE, 13(10): 1–22, e0204243. doi:10.1371/journal.pone.0204243.
  • Widhe, M., J. Johansson, M. Hedhammar, and A. Rising. 2012. Invited review: current progress and limitations of spider silk for biomedical applications. Biopolymers 97 (6):468–78. doi:10.1002/bip.21715.
  • Wright, S. 2011. The antimicrobial properties of spider silk. M.Sc. dissertation, University of Nottingham. Accessed October, 2021. http://eprints.nottingham.ac.uk/12033/1/Finalhandedinthesispdf.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.