158
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Influence of Alkali Treatment on Physicochemical, Thermal and Mechanical Properties of Hibiscus Vitifolius Fibers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 11708-11721 | Published online: 12 Feb 2022

References

  • Ariawan, D., T. S. Rivai, E. Surojo, S. Hidayatulloh, H. I. Akbar, and A. R. Prabowo. 2020. Effect of alkali treatment of Salacca Zalacca fiber (SZF) on mechanical properties of HDPE composite reinforced with SZF. Alexandria Engineering Journal 59 (5):3981–89. doi:10.1016/j.aej.2020.07.005.
  • Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015a. Characterization of new natural cellulosic fiber from acacia leucophloea bark. International Journal of Polymer Analysis and Characterization 20:367–76. doi:10.1080/1023666X.2015.1018737.
  • Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015b. Physico-chemical properties of alkali-treated acacia leucophloea fibers. International Journal of Polymer Analysis and Characterization 20:704–13. doi:10.1080/1023666X.2015.1081133.
  • Balaji, A. N., and K. J. Nagarajan. 2017. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydrate Polymers 174:200–08. doi:10.1016/j.carbpol.2017.06.065.
  • Baskaran, P. G., M. Kathiresan, and P. Pandiarajan. 2020. Effect of alkali-treatment on structural, thermal, tensile properties of dichrostachys cinerea bark fiber and its composites. Journal of Natural Fibers. doi:10.1080/15440478.2020.1745123.
  • Boopathi, L., P. S. Sampath, and K. Mylsamy. 2012. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Composites Part B: Engineering 43:3044–52. doi:10.1016/j.compositesb.2012.05.002.
  • Cai, M., H. Takagi, A. N. Nakagaito, M. Katoh, T. Ueki, G. I. N. Waterhouse, and Y. Li. 2015. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products 65:27–35. doi:10.1016/j.indcrop.2014.11.048.
  • Cai, M., H. Takagi, A. N. Nakagaito, Y. Li, and G. I. N. Waterhouse. 2016. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing 90:589–97. doi:10.1016/j.compositesa.2016.08.025.
  • Cao, Y., S. Shibata, and I. Fukumoto. 2006. Mechanical properties of biodegradable composites reinforced with bagasse fiber before and after alkali treatments. Composites Part A: Applied Science and Manufacturing 37:423–29. doi:10.1016/j.compositesa.2005.05.045.
  • Ganapathy, T., R. Sathiskumar, P. Senthamaraikannan, S. S. Saravanakumar, and A. Khan. 2019. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules 138:573–81. doi:10.1016/j.ijbiomac.2019.07.136.
  • Gassan, J., and A. K. Bledzki. 1999. Alkali treatment of jute fibers: Relationship between structure and mechanical properties. Journal of Applied Polymer Science 71:623–29. doi:10.1002/(SICI)1097-4628(10000124)71:4<623::AID-APP14>3.0.CO;2-K.
  • Gopinath, R., K. Ganesan, S. S. Saravanakumar, and R. Poopathi. 2016. Characterization of new cellulosic fiber from the stem of Sida Rhombifolia. International Journal of Polymer Analysis and Characterization 21:123–29. doi:10.1080/1023666X.2016.1117712.
  • Gurukarthik Babu, B., D. Princewinston, S. S. Saravanakumar, A. Khan, P. V. Aravind Bhaskar, S. Indran, and D. Divya. 2020. Investigation on the physicochemical and mechanical properties of novel alkali-treated phaseolus vulgaris fibers. Journal of Natural Fibers. doi:10.1080/15440478.2020.1761930.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering 43:2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Kathirselvam, M., A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar. 2019. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydrate Polymers 217:178–89. doi:10.1016/j.carbpol.2019.04.063.
  • Komuraiah, A., N. Shyam Kumar, and B. Durga Prasad. 2014. Chemical composition of natural fibers and its influence on their mechanical properties. Mechanics of Composite Materials 50:359–76. doi:10.1007/s11029-014-9422-2.
  • Kurschner, K., A. Hoffer, S. H. Jenkins, W. Vieweg, O. Schwarzkopf, W. Schramek, C. Schubert, H. Velten, K. Hess, C. Trogus, et al. 1933. Cellulose und Cellulosederivate. Zeitschrift für analytische Chemie 92:145–54. doi:10.1007/BF01354736.
  • Loganathan, L., and B. Muthu Chozha Rajan. 2020a. Mechanical properties of alkali- treated carica papaya fiber-reinforced epoxy composites. Journal of Natural Fibers. doi:10.1080/15440478.2020.1739590.
  • Loganathan, T. M., M. T. H. Sultan, Q. Ahsan, M. J. Naveen, A. H. Md. Shah, A. U. Md Shah, and L. Seng Hua. 2020b. Characterization of alkali treated new cellulosic fibre from. Cyrtostachys Renda. Journal of Materials Research and Technology 9:3537–46. doi:10.1016/j.jmrt.2020.01.091.
  • Mishra, S., A. K. Mohanty, L. T. Drzal, M. Misra, S. Parija, S. K. Nayak, and S. S. Tripathy. 2003. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology 63:1377–85. doi:10.1016/s0266-3538(03)00084-8.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2001. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces 8:313–43. doi:10.1163/156855401753255422.
  • Nam, T. H., S. Ogihara, N. H. Tung, and S. Kobayashi. 2011. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Composites Part B: Engineering 42:1648–56. doi:10.1016/j.compositesb.2011.04.001.
  • Nitta, Y., K. Goda, J. Noda, and W. I. I. Lee. 2013. Cross-sectional area evaluation and tensile properties of alkali-treated kenaf fibres. Composites Part A: Applied Science and Manufacturing 49:132–38. doi:10.1016/j.compositesa.2013.02.003.
  • Obi Reddy, K., K. Raja Narender Reddy, J. Zhang, J. Zhang, and A. V. Rajulu. 2014. Effect of Alkali Treatment on the Properties of Century Fiber. Journal of Natural Fibers. doi:10.1080/15440478.2013.800812.
  • Obi Reddy, K., C. Uma Maheswari, M. Shukla, J. I. Song, and A. Varada Rajulu. 2013. Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Composites Part B: Engineering 44:433–38. doi:10.1016/j.compositesb.2012.04.075.
  • Oushabi, A., S. Sair, F. O. Hassani, Y. Abboud, O. Tanane, and A. E. Bouari. 2017. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering 23:116–23. doi:10.1016/j.sajce.2017.04.005.
  • Patel, J. P., and P. H. Parsania. 2018. Characterization, testing, and reinforcing materials of biodegradable composites. Biodegradable and Biocompatible Polymer Composites 55–79. doi:10.1016/b978-0-08-100970-3.00003-1.
  • Pickering, K. L., M. A. Sawpan, J. Jayaraman, and A. Fernyhough. 2011. Influence of loading rate, alkali fibre treatment and crystallinity on fracture toughness of random short hemp fibre reinforced polylactide bio-composites. Composites Part A: Applied Science and Manufacturing 42:1148–56. doi:10.1016/j.compositesa.2011.04.020.
  • Pitchayya Pillai, G., P. Manimaran, and V. Vignesh. 2020. Physico-chemical and mechanical properties of alkali-treated red banana peduncle fiber. Journal of Natural Fibers. doi:10.1080/15440478.2020.1723777.
  • Pothan, L. A., J. George, and S. Thomas. 2002. Effect of fiber surface treatments on the fiber–matrix interaction in banana fiber reinforced polyester composites. Composites Interfaces 9:335–53. doi:10.1163/15685540276019492.
  • Premalatha, N., S. S. Saravanakumar, M. R. Sanjay, S. Siengchin, and A. Khan. 2019. Structural and thermal properties of chemically modified Luffa Cylindrica fibers. Journal of Natural Fibers 18:1038–44. doi:10.1080/15440478.2019.1678546.
  • Prithiviraj, M., and R. Muralikannan. 2020. Investigation of optimal alkali-treated perotis indica plant fibers on physical, chemical, and morphological properties. Journal of Natural Fibers. doi:10.1080/15440478.2020.182129.
  • Ramasamy, D., and A. Saraswathy. 2014. Vitiquinolone – A quinolone alkaloid from Hibiscus vitifolius Linn. Food Chemistry 145:970–75. doi:10.1016/j.foodchem.2013.08.128.
  • Roy, A., S. Chakraborty, S. P. Kundu, R. K. Basak, S. B. Majumder, and B. Adhikari. 2011. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresource Technology 107:222–28. doi:10.1016/j.biortech.2011.11.073.
  • Saha, P., S. Manna, S. R. Chowdhury, R. Sen, D. Roy, and B. Adhikari. 2010. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresource Technology 101:3182–87. doi:10.1016/j.biortech.2009.12.010.
  • Saravana kumaar , A. A. Senthilkumar, Saravanakumar, S. S., Senthamaraikannan, P., Loganathan , L., and B. Muthu, Chozha Rajan (2020). Mechanical Properties of Alkali-Treated Carica Papaya Fiber-Reinforced Epoxy Composites. Journal of Natural Fibers doi:10.1080/15440478.2020.1739590.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, and I. G. Moorthy. 2014. Investigation of physio-chemical properties of alkali-treated Prosopis juliflora Fibers. International Journal of Polymer Analysis and Characterization 19:309–17. doi:10.1080/1023666X.2014.902527.
  • Saravanakumar, A., A. Senthilkumar, S. S. Saravanakumar, M. R. Sanjay, and A. Khan. 2018. Impact of alkali treatment on physico-chemical, thermal, structural and tensile properties of Carica papaya bark fibers. International Journal of Polymer Analysis and Characterization 23:529–36. doi:10.1080/1023666X.2018.1501931.
  • Sathyamoorthy, G., R. Vijay, and D. L. Singaravelu. 2020. Development and characterization of alkali-treated and untreated Dactyloctenium aegyptium fibers based epoxy composites. Materials Today: Proceedings 39:1215–20. doi:10.1016/j.matpr.2020.03.796.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from. Coccinia grandis.L. Carbohydrate Polymers 186:332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Sreekumar, P. A., S. P. Thomas, J. M. Saiter, K. Joseph, G. Unnikrishnan, and S. Thomas. 2009. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Composites Part A: Applied Science and Manufacturing 40:1777–84. doi:10.1016/j.compositesa.2009.08.013.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria Cylindrica fibres – An exploratory investigation. Materials & Design 32:453–61. doi:10.1016/j/matdes.2010.06.004.
  • Tenazoa, C., H. Savastano, S. Charca, M. Quintana, and E. Flores. 2019. The Effect of Alkali Treatment on Chemical and Physical Properties of Ichu and Cabuya Fibers. Journal of Natural Fibers 18:923–36. doi:10.1080/15440478.2019.1675211.
  • Thirumurugan, R., M. Jayaraj, D. Shanmugam, and T. Ramkumar. 2019. Characterization of new natural cellulosic fiber from coconut tree primary flower leaf stalk fiber (CPFLSF). Journal of Natural Fibers. doi:10.1080/15440478.2019.1701608.
  • Umashankaran, M., and S. Gopalakrishnan. 2020. Effect of sodium hydroxide treatment on physico-chemical, thermal, tensile and surface morphological properties of Pongamia Pinnata L. Bark Fiber. Journal of Natural Fibers. doi:10.1080/15440478.2019.1711287.
  • Venugopal, A., and S. Boominathan. 2020. Physico-chemical, thermal and tensile properties of alkali-treated Acacia Concinna Fiber. Journal of Natural Fibers. doi:10.1080/15440478.2020.1838998.
  • Vijay, R., D. L. Singaravelu, A. Vinod, M. R. Sanjay, S. Siengchin, M. Jawaid, A. Khan, and J. Parameswaranpillai. 2018. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International Journal of Biological Macromolecules 125:99–108. doi:10.1016/j.ijbiomac.2018.12.056.
  • Vijay, R., A. Vinod, D. L. Singaravelu, M. R. Sanjay, and S. Siengchin. 2020. Characterization of Chemical Treated and Untreated natural fibers from Pennisetum orientale grass- A potential reinforcement for lightweight polymeric applications. International Journal of Lightweight Materials and Manufacture 4:43–49. doi:10.1016/j.ijlmm.2020.06.008.
  • Zhou, X., W. Li, R. Mabon, and L. J. Broadbelt. 2016. A Critical Review on Hemicellulose Pyrolysis. Energy Technology 5 (1):52–79. doi:10.1002/ente.201600327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.