212
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Absorption Accelerating Behavior of Surface Modified Wool: Mechanism, Isotherm, Kinetic, and Thermodynamic Studies

, , , , , , , & show all
Pages 11858-11869 | Published online: 02 Mar 2022

References

  • Ajmal, A., and P. R. Piergiovannit. 2018. Effect of mordanting on the adsorption thermodynamics and kinetics of cochineal for wool. Industrial & Engineering Chemistry Research 57:4462–69. doi:10.1021/acs.iecr.7b04915.
  • Allafi, F., M. S. Hossain, J. Lalung, M. Shaah, A. Salehabadi, M. I. Ahmad, and A. Shadi. 2020. Advancements in applications of natural wool fiber: review. Journal of Natural Fibers Advance online publication. doi:10.1080/15440478.2020.1745128.
  • An, F. F., K. J. Fang, X. M. Liu, H. Z. Yang, and G. Qu. 2020. Protease and sodium alginate combined treatment of wool fabric for enhancing inkjet printing performance of reactive dyes. International Journal of Biological Macromolecules 146:959–64. doi:10.1016/j.ijbiomac.2019.09.220.
  • Bai, R. B., Y. Y. Yu, Q. Wang, X. R. Fan, P. Wang, J. G. Yuan, and J. S. Shen. 2018. Laccase-catalyzed poly(ethylene glycol)-templated ‘zip’ polymerization of caffeic acid for functionalization of wool fabrics. Journal of Cleaner Production 191:48–56. doi:10.1016/j.jclepro.2018.04.213.
  • Banchero, M. 2013. Supercritical fluid dyeing of synthetic and natural textiles – a review. Coloration Technology 1:2–17. doi:10.1111/cote.12005.
  • Barani, H., and A. Haji. 2015. Analysis of structural transformation in wool fiber resulting from oxygen plasma treatment using vibrational spectroscopy. Journal of Molecular Structure 1079:35–40. doi:10.1016/j.molstruc.2014.09.041.
  • El-Sayed, W., R. Nofal, and H. El-Sayed. 2010. Use of lipoprotein lipase in the improvement of some properties of wool fabrics. Coloration Technology 126:296–302. doi:10.1111/j.1478-4408.2010.00260.x.
  • Gemeay, A. H., B. E. Keshta, R. G. El-Sharkawy, and A. B. Zaki. 2020. Chemical Insight into the adsorption of reactive wool dyes onto amine-functionalized magnetite/silica core-shell from industrial wastewaters. Environmental Science and Pollution Research 27:32341–58. doi:10.1007/s11356-019-06530-y.
  • Guo, H., H. H. Song, L. L. Gan, L. J. Xia, D. Sheng, Y. Liu, A. M. Wang, J. B. Hu, W. Zhang, W. L. Xu, et al. 2020. Is it feasible to use dyed wool powder as pigment? Advanced Powder Technology 31:4632–41. doi:10.1016/j.apt.2020.10.007.
  • Han, R. P., W. H. Zou, W. H. Yu, S. J. Cheng, Y. F. Wang, and J. Shi. 2007. Biosorption of methylene blue from aqueous solution by fallen phoenix tree’s leaves. Journal of Hazardous Materials 141:156–62. doi:10.1016/j.jhazmat.2006.06.107.
  • Hassan, M. M., and M. Bhagvandas. 2017. Sustainable ultrasound-assisted ultralow liquor ratio dyeing of wool textiles with an acid Dye. ACS Sustainable Chemistry & Engineering 5:973–81. doi:10.1021/acssuschemeng.6b02293.
  • Hassan, M. M., and C. M. Carr. 2019. A review of the sustainable methods in imparting shrink resistance to wool fabrics. Journal of Advanced Research 18:39–60. doi:10.1016/j.jare.2019.01.014.
  • Hickman, W. S. 1993. Environmental aspects of textile processing. Journal of the Society of Dyers and Colourists 109:32–37. doi:10.1111/j.1478-4408.1993.tb01499.x.
  • Hu, J. L., M. I. Iqbal, and F. X. Sun. 2020. Wool can be cool: water-actuating woolen knitwear for both hot and cold. Advanced Functional Materials 20:2005033. doi:10.1002/adfm.202005033.
  • Iqbal, M. I., S. Shuo, Y. Z. Jiang, B. Fei, Q. Y. Xia, X. Wang, W. B. Hu, and J. L. Hu. 2021. Woolen respirators for thermal management. Advanced Materials Technologies 6:2100201. doi:10.1002/admt.202100201.
  • Kadam, V., S. Rani, S. Jose, D. B. Shakyawar, and N. Shanmugam. 2021. Biomaterial based shrink resist treatment of wool fabric: a sustainable technology. Sustainable Materials and Technologies 29:e00298. doi:10.1016/j.susmat.2021.e00298.
  • Kaur, A., and J. N. Chakraborty. 2015. Controlled eco-friendly shrink-resist finishing of wool using bromelain. Journal of Cleaner Production 108:503–13. doi:10.1016/j.jclepro.2015.07.147.
  • Kaur, A., J. N. Chakraborty, and K. K. Dubey. 2016. Enzymatic functionalization of wool for felting shrink-resistance. Journal of Natural Fibers 13:437–50. doi:10.1080/15440478.2015.1043686.
  • Li, B., J. B. Yao, J. N. Niu, J. Y. Liu, L. Wang, M. Feng, and Y. L. Sun. 2019. Study on the effect of organic phosphonic compounds on disulfide bonds in wool. Textile Research Journal 89:2682–93. doi:10.1177/0040517518798652.
  • Li, W. B., Y. Zhao, and X. Wang. 2019. Effect of surface modification on the dynamic heat and mass transfer of wool fabrics. Journal of Thermal Biology 85:102416. doi:10.1016/j.jtherbio.2019.102416.
  • Mori, M., and M. Matsudaira. 2013. Comparison of woolen eco-friendly anti-felting treatment with classic anti-felting procedures. Textile Research Journal 83:208–15. doi:10.1177/0040517512458343.
  • Okada, M., Y. Kimura, M. Maekawa, and K. Joko. 2008. SEM images of wool fiber cross sections etched by means of protease digestion. Sen-i Gakkaishi 64:118–24. doi:10.2115/fiber.64.118.
  • Ren, Y. F., J. X. Gong, F. B. Wang, Z. Li, J. F. Zhang, R. R. Fu, and J. F. Lou. 2016. Effect of dye Bath pH on dyeing and functional properties of wool fabric dyed with tea extract. Dye and Pigments 134:334–41. doi:10.1016/j.dyepig.2016.07.032.
  • Sadeghi-Kiakhani, M. 2015. Eco-friendly dyeing of wool and nylon using madder as a natural dye: kinetic and adsorption isotherm studies. International Journal of Environmental Science and Technology 12:2363–70. doi:10.1007/s13762-015-0770-9.
  • Sadiq, A. C., N. Y. Rahim, and F. B. M. Suah. 2020. Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. International Journal of Biological Macromolecules 164:3965–73. doi:10.1016/j.ijbiomac.2020.09.029.
  • Shen, J. J., P. Gao, and H. Ma. 2014. The Effect of Tris(2-carboxyethyl)phosphine on the dyeing of wool fabrics with natural dyes. Dyes and Pigments 108:70–75. doi:10.1016/j.dyepig.2014.04.027.
  • Sun, J., H. Y. Wang, C. L. Zheng, and G. W. Wang. 2019. Synthesis of some surfactant-type acid dyes and their low-temperature dyeing properties on wool fiber. Journal of Cleaner Production 218:284–93. doi:10.1016/j.jclepro.2019.01.341.
  • Sun, X. T., L. R. Yang, Q. Li, J. M. Zhao, X. P. Li, X. Q. Wang, and H. Z. Liu. 2014. Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of cr(vi): synthesis and adsorption studies. Chemical Engineering Journal 241:175–83. doi:10.1016/j.cej.2013.12.051.
  • Tonin, C., M. Zoccola, A. Aluigi, A. Varesano, A. Montarsolo, C. Vineis, and F. Zimbardi. 2006. Study on the conversion of wool keratin by steam explosion. Biomacromolecules 7:3499–504. doi:10.1021/bm060597w.
  • Wang, P., Q. Wang, L. Cui, X. R. Fan, J. G. Yuan, and M. R. Gao. 2010. A comparative evaluation of the action of savinase and papain to the cutinase-pretreated wool. Fibers and Polymers 11:586–92. doi:10.1007/s12221-010-0586-9.
  • Xin, J. H., R. Y. Zhu, J. K. Hua, and J. Shen. 2002. Surface modification and low temperature dyeing properties of wool treated by UV radiation. Coloration Technology 118:169–73. doi:10.1111/j.1478-4408.2002.tb00095.x.
  • Yang, W. H., and Z. H. Shan. 2021. Application of wool keratin: an anti-ultraviolet wall material in spray drying. Journal of Food Science and Technology. doi:10.1007/s13197-020-04897-2.
  • Ye, X. P., J. G. Yuan, Z. Jiang, S. X. Wang, P. Wang, Q. Wang, and L. Cui. 2020. Thiol-ene photoclick reaction: an eco-friendly and facile approach for preparation of MPEG-g-keratin biomaterial. Engineering in Life Sciences 20:17–25. doi:10.1002/elsc.201900105.
  • Yuan, J. G., Q. Wang, and X. R. Fan. 2010. Dyeing behaviors of ionic liquid treated wool. Journal of Applied Polymer Science 117:2278–83. doi:10.1002/app.32020.
  • Zhang, N., Q. Wang, J. G. Yuan, L. Cui, P. Wang, Y. Y. Yu, and X. R. Fan. 2018. Highly Efficient and eco-friendly wool degradation by l-cysteine-assisted esperase. Journal of Cleaner Production 192:433–42. doi:10.1016/j.jclepro.2018.05.008.
  • Zhang, Y. Q., R. J. Yang, and W. Zhao. 2014. Improving digestibility of feather meal by steam flash explosion. Journal of Agricultural and Food Chemistry 62:2745–51. doi:10.1021/jf405498k.
  • Zhang, W., J. M. Yao, P. Huang, and S. Huang. 2020. Aqueous extraction of buckwheat hull and its functional application in eco-friendly dyeing for wool fabric. Textile Research Journal 90:641–54. doi:10.1177/0040517519877465.
  • Zhang, Y. Y., N. Zhang, Q. Wang, Y. Y. Yu, P. Wang, and J. G. Yuan. 2021. A facile and controllable approach for surface modification of wool by micro-dissolution. Fibers and Polymers 21:1229–37. doi:10.1007/s12221-020-9727-9.
  • Zhao, Z., Y. B. Di, and W. Wang. 2019. Modification of ultrafine wool with modified protease. Journal of Natural Fibers 17:1423–29. doi:10.1080/15440478.2019.1576570.
  • Zhao, Z. Y., C. Song, J. Zhou, R. M. Hu, H. Xiao, Y. P. Liu, and M. Lu. 2020. An eco-friendly method based on the self-glue effect of keratins for preparing fe3o4-coated wool. Journal of Applied Polymer Science 137:49179. doi:10.1002/app.49179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.