1,404
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Morphology, Structure, and Mechanical Properties of New Natural Cellulose Fiber Reinforcement from Waru (Hibiscus Tiliaceus) Bark

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 12385-12397 | Published online: 29 Apr 2022

References

  • Alshammari B A, Alotaibi M D, Alothman O Y, Sanjay M R, Kian L Kia, Almutairi Z and Jawaid M. (2019). A New Study on Characterization and Properties of Natural Fibers Obtained from Olive Tree (Olea europaea L.) Residues. J Polym Environ, 27(11), 2334–2340. 10.1007/s10924-019-01526-8
  • Asim, M., M. Jawaid, K. Abdan, and M. Ridzwan Ishak. 2016. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering 13 (3):426–35. doi:10.1016/S1672-6529(16)60315-3.
  • Baskaran, P. G., M. Kathiresan, P. Senthamaraikannan, and S. S. Saravanakumar. 2018. Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. Journal of Natural Fibers 15 (1):62–68. doi:10.1080/15440478.2017.1304314.
  • Chen, R. S., Y. Helmi Muhammad, and S. Ahmad. 2021. Physical, mechanical and environmental stress cracking characteristics of epoxy/glass fiber composites: effect of matrix/fiber modification and fiber loading. Polymer Testing 96:107088. doi:10.1016/j.polymertesting.2021.107088.
  • Elanchezhian, C., B. Vijaya Ramnath, G. Ramakrishnan, M. Rajendrakumar, V. Naveenkumar, and M. K. Saravanakumar. 2018. Review on mechanical properties of natural fiber composites. Materials Today: Proceedings 5 (1):1785–90. doi:10.1016/j.matpr.2017.11.276.
  • Gapsari, F., A. Purnowidodo, S. Hidayatullah, and S. Suteja. 2021. Characterization of timoho fiber as a reinforcement in green composite. Journal of Materials Research and Technology 13:1305–15. doi:10.1016/j.jmrt.2021.05.049.
  • Ilyas R Ahmad et al . (2019). Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale. Journal of Materials Research and Technology, 8(3), 2753–2766. 10.1016/j.jmrt.2019.04.011
  • Indran, S., R. Edwin Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from cissus quadrangularis root. Carbohydrate Polymers 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • Jayaramudu, J., B. R. Guduri, and A. Varada Rajulu. 2010. Characterization of new natural cellulosic fabric grewia tilifolia. Carbohydrate Polymers 79 (4):847–51. doi:10.1016/j.carbpol.2009.10.046.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2012. Chemical Treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering 43 (7):2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Katerina, K., A. Giannakas, K. Grigoriadi, N. M. Barkoula, and A. Ladavos. 2014. Preparation and characterization of acetylated corn starch-(PVOH)/clay nanocomposite films. Carbohydrate Polymers 102 (1):216–22. doi:10.1016/j.carbpol.2013.11.030.
  • Khan A, Vijay R, Singaravelu D Lenin, Sanjay M R, Siengchin S, Jawaid M, Alamry K A and Asiri A M. (2022). Extraction and Characterization of Natural Fibers from Citrullus lanatus Climber. Journal of Natural Fibers, 19(2), 621–629. 10.1080/15440478.2020.1758281
  • Kumari, M., R. Kumar, and V. Kumar. 2014. Surface modification of cellulose using silane coupling agent. Carbohydrate Polymers 111:849–55. doi:10.1016/j.carbpol.2014.05.041.
  • Loganathan T Moli, Sultan M Thariq, Jawaid M, Ahsan Q, Naveen J and Perumal V. (2022). Characterization of New Cellulosic Cyrtostachys renda and Ptychosperma macarthurii Fibers from Landscaping Plants. Journal of Natural Fibers, 19(2), 669–684. 10.1080/15440478.2020.1758865
  • Moshi A Arul, Ravindran D, Bharathi S Sundara, Indran S, Saravanakumar S and Liu Y. (2020). Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules, 142 212–221. 10.1016/j.ijbiomac.2019.09.094
  • Pankow, M., B. Justusson, M. Riosbaas, A. M. Waas, and C. F. Yen. 2019. Effect of fiber architecture on tensile fracture of 3D woven textile composites. Composite Structures 225: Composite Structures: 111139. doi:10.1016/j.compstruct.2019.111139.
  • Raharjo, W. W., R. Soenoko, Y. Surya Irawan, and A. Suprapto. 2018. The influence of chemical treatments on cantala fiber properties and interfacial bonding of cantala fiber/recycled high density polyethylene (RHDPE). Journal of Natural Fibers 15 (1):98–111. doi:10.1080/15440478.2017.1321512.
  • Reis, R. H. M., L. Fernandes Nunes, M. Souza Oliveira, V. Florêncio De Veiga Junior, F. Da Costa Garcia Filho, M. Alexandrino Pinheiro, V. Scarpini Candido, and S. Neves Monteiro. 2020. Guaruman fiber: another possible reinforcement in composites. Journal of Materials Research and Technology 9 (1):622–28. doi:10.1016/j.jmrt.2019.11.002.
  • Rojo, E., M. V. Alonso, M. Oliet, B. Del Saz-Orozco, and F. Rodriguez. 2015. Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Composites Part B: Engineering 68:185–92. doi:10.1016/j.compositesb.2014.08.047.
  • Rybin, V. A., A. V. Utkin, and N. I. Baklanova. 2013. Alkali resistance, microstructural and mechanical performance of zirconia-coated basalt fibers. Cement and Concrete Research 53:1–8. doi:10.1016/j.cemconres.2013.06.002.
  • Sabarinathan, P., K. Rajkumar, V. E. Annamalai, and K. Vishal. 2020. Characterization on chemical and mechanical properties of silane treated fish tail palm fibres. International Journal of Biological Macromolecules 163:2457–64. doi:10.1016/j.ijbiomac.2020.09.159.
  • Sari, H., I. N. G. W. Nasmi, Y. S. Irawan, and E. Siswanto. 2018. Characterization of the chemical, physical, and mechanical properties of NaOH-Treated natural cellulosic fibers from corn husks. Journal of Natural Fibers 15 (4):545–58. doi:10.1080/15440478.2017.1349707.
  • Sawpan, M. A., K. L. Pickering, and A. Fernyhough. 2011. Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Composites Part A: Applied Science and Manufacturing 42 (8):888–95. doi:10.1016/j.compositesa.2011.03.008.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from coccinia grandis.L. Carbohydrate Polymers 186 (April):332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Siva R, Mobithis M, Ravichandran R, Valarmathi T, Jeya Jeevahan J and Sangeetha M. (2021). Characterization of mechanical, chemical properties and microstructure of untreated and treated Cissus Quadrangularis fiber. Materials Today: Proceedings, 47 4479–4483. 10.1016/j.matpr.2021.05.320
  • Sood, M., and G. Dwivedi. 2018. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum. Egyptian Petroleum Research Institute 27 (4):775–83. doi:10.1016/j.ejpe.2017.11.005.
  • Supian, A. B. M., S. M. Sapuan, M. Y. M. Zuhri, E. S. Zainudin, H. H. Ya, and H. N. Hisham. 2020. Effect of winding orientation on energy absorption and failure modes of filament wound kenaf/glass fibre reinforced epoxy hybrid composite tubes under intermediate-velocity impact (IVI) load Journal of Materials Research and Technology 10 . 1–14. doi:10.1016/j.jmrt.2020.11.103.
  • Suryanto, H., S. Sukarni, Y. Rohmat Aji Pradana, U. Yanuhar, and K. Witono. 2019. Effect of mercerization on properties of mendong (Fimbristylis Globulosa) fiber. Songklanakarin Journal of Science and Technology 41 (3):624–30. doi:10.14456/sjst-psu.2019.73.
  • Tran, T. P. T., J. Charles Bénézet, and A. Bergeret. 2014. Rice and einkorn wheat husks reinforced poly(Lactic Acid) (PLA) biocomposites: Effects of alkaline and silane surface treatments of husks. Industrial Crops and Products 58:111–24. doi:10.1016/j.indcrop.2014.04.012.
  • Vijay, R., D. Lenin Singaravelu, A. Vinod, M. R. Sanjay, S. Siengchin, M. Jawaid, A. Khan, and J. Parameswaranpillai. 2019. Characterization of raw and alkali treated new natural cellulosic fibers from tridax procumbens. International Journal of Biological Macromolecules 125 (March):99–108. doi:10.1016/j.ijbiomac.2018.12.056.
  • Vijay, R., A. Vinod, D. Lenin Singaravelu, M. R. Sanjay, and S. Siengchin. 2021. Characterization of chemical treated and untreated natural fibers from Pennisetum orientale grass- a potential reinforcement for lightweight polymeric applications. International Journal of Lightweight Materials and Manufacture 4 (1):43–49. doi:10.1016/j.ijlmm.2020.06.008.
  • Wirawan, W. A., M. Agus Choiron, E. Siswanto, and T. Dwi Widodo. 2020 1. Analysis of the fracture area of tensile test for natural woven fiber composites (Hibiscus Tiliaceus-Polyester). Journal of Physics: Conference Series 1700 10.1088/1742-6596/1700/1/012034.
  • Xue, L., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15 (1):25–33. doi:10.1007/s10924-006-0042-3.
  • Yanjun, X., A. S. H. Callum, Z. Xiao, H. Militz, and C. Mai. 2010. Composites : Part a silane coupling agents used for natural fiber/polymer composites : A review. Composites Part A 41 (7):806–19. doi:10.1016/j.compositesa.2010.03.005.
  • Zhou, F., G. Cheng, and B. Jiang. 2014. Applied surface science effect of silane treatment on microstructure of sisal fibers. Applied Surface Science 292:806–12. doi:10.1016/j.apsusc.2013.12.054.