213
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Acoustic Emission Characteristics and Failure Patterns of Basalt Fiber and Basalt Textile Reinforced Concrete under Flexural Load

, &
Pages 14725-14743 | Published online: 09 May 2022

References

  • Aggelis, D. G., M. El Kadi, T. Tysmans, and J. Blom. 2017. Effect of propagation distance on acoustic emission fracture mode classification in textile reinforced cement. Construction and Building Materials 152:872–79. doi:10.1016/j.conbuildmat.2017.06.166.
  • Aggelis, D. G., D. V. Soulioti, N. M. Barkoula, A. S. Paipetis, and T. E. Matikas. 2012. Influence of fiber chemical coating on the acoustic emission behavior of steel fiber reinforced concrete. Cement & Concrete Composites 34 (1):62–67. doi:10.1016/j.cemconcomp.2011.07.003.
  • Alaskar, A., A. Albidah, A. S. Alqarni, R. Alyousef, and H. Mohammadhosseini. 2021. Performance evaluation of high-strength concrete reinforced with basalt fibers exposed to elevated temperatures. Journal of Building Engineering 35:102108. doi:10.1016/j.jobe.2020.102108.
  • Arpit, G., G. Eshmaiel, S. P. Homayoon, and T. Mark. 2021. Inhibitor efficiency of migratory corrosion inhibitors to reduce corrosion in reinforced concrete exposed to high chloride environment. Construction and Building Materials 303:124461. doi:10.1016/j.conbuildmat.2021.124461.
  • Bahrar, M., Z. I. Djamai, M. E. Mankibi, A. S. Larbi, and M. Salvia. 2018. Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. Sustainable Cities and Society 41:455–68. doi:10.1016/j.scs.2018.06.014.
  • Barbosa, F. S., M. C. R. Farage, A. L. Beaucour, and S. Ortola. 2012. Evaluation of aggregate gradation in lightweight concrete via image processing. Construction and Building Materials 29:7–11. doi:10.1016/j.conbuildmat.2011.08.081.
  • Bian, C., J. Y. Wang, and J. Y. Guo. 2021. Damage mechanism of ultra-high performance fibre reinforced concrete at different stages of direct tensile test based on acoustic emission analysis. Construction and Building Materials 267:120927. doi:10.1016/j.conbuildmat.2020.120927.
  • Brameshuber, W., M. Hinzen, A. Dubey, A. Peled, B. Mobasher, A. Bentur, and C. Aldea. 2016. Recommendation of RILEM TC 232-TDT: Test methods and design of textile reinforced concrete. Materials and Structures 49 (12):4923–27. doi:10.1617/s11527-016-0839-z.
  • Bruno, L. G., A. Z. Raul, A. P. Giovanni, and G. A. Plizzari. 2021. Chloride-induced corrosion in reinforced concrete and fiber reinforced concrete elements under tensile service loads. Cement & Concrete Composites 124:104245. doi:10.1016/j.cemconcomp.2021.104245.
  • Carvelli, V., A. D’Ettorre, and S. V. Lomov. 2017. Acoustic emission and damage mode correlation in textile reinforced PPS composites. Composite Structures 163:399–409. doi:10.1016/j.compstruct.2016.12.012.
  • Chen, H. M., C. Y. Xie, C. Fu, J. Liu, X. L. Wei, and D. K. Wu. 2020. Orthogonal analysis on mechanical properties of basalt-polypropylene fiber mortar. Materials 13 (13):2937. doi:10.3390/ma13132937.
  • Chen, F. B., B. Xu, H. Z. Jiao, X. M. Chen, Y. L. Shi, J. X. Shi, and Z. Li. 2021. Triaxial mechanical properties and microstructure visualization of BFRC. Construction and Building Materials 278:122275. doi:10.1016/j.conbuildmat.2021.122275.
  • Chhorn, B., and W. Y. Jung. 2020. Experimental evaluation of the tensile bonding strength of the basalt fiber-reinforced polymer-concrete interface. Advances in Structural Engineering 23 (15):3323–34. doi:10.1177/1369433220934909.
  • Djamai, Z. I., K. L. Nguyen, A. S. Larbi, F. Salvatore, and G. C. Cai. 2021. PCM-modified textile-reinforced concrete slab: A multiscale and multiphysics investigation. Construction and Building Materials 293:123483. doi:10.1016/j.conbuildmat.2021.123483.
  • Du, Y. X., X. Y. Zhang, F. Zhou, D. J. Zhu, M. M. Zhang, and W. Pan. 2018. Flexural behavior of basalt textile-reinforced concrete. Construction and Building Materials 183:7–21. doi:10.1016/j.conbuildmat.2018.06.165.
  • Esmaeili, J., I. Sharifi, J. Kasaei, M. Nourizadeh, and A. E. Emamieh. 2019. Experimental and analytical investigation on strengthening of heat damaged concrete by textile reinforced concrete (TRC). Archives of Civil and Mechanical Engineering 19 (4):1468–83. doi:10.1016/j.acme.2019.09.008.
  • Feng, G. Y., X. Y. Wang, D. T. Zhang, H. J. Cao, K. Qian, and X. L. Xiao. 2017. A comparative study on mechanical properties of surface modified polypropylene (PP) fabric reinforced concrete composites. Construction and Building Materials 157:372–81. doi:10.1016/j.conbuildmat.2017.08.004.
  • Giese, A. C. H., D. N. Giese, V. F. P. Dutra, L. C. Pinto, and D. S. Filho. 2012. Flexural behavior of reinforced concrete beams strengthened with textile reinforced mortar. Journal of Building Engineering 33:101873. doi:10.1016/j.jobe.2020.101873.
  • Gifta, C. C., R. Selvaraj, R. Nelson, and S. R. Madamuthu. 2021. Mechanical properties of Prosopis juliflora fiber reinforced concrete. Journal of Natural Fibers Advance online publication. doi:10.1080/15440478.2020.1856267.
  • Goliath, K. B., D. C. T. Cardoso, and F. D. A. Silva. 2021. Flexural behavior of carbon-textile-reinforced concrete I-section beams. Composite Structures 260:113540. doi:10.1016/j.compstruct.2021.113540.
  • Jani, S. P., A. S. Kumar, M. A. Khan, S. Sajith, and A. Saravanan. 2021. Influence of natural filler on mechanical properties of hemp/kevlar hybrid green composite and analysis of change in material behavior using acoustic emission. Journal of Natural Fibers 18 (11):1580–91. doi:10.1080/15440478.2019.1692321.
  • Jia, M. H., X. L. Xiao, X. F. Lu, G. Y. Feng, and K. Qian. 2020. Influence of stacking sequence of basalt-fiber grilles on mechanical properties for textile-reinforced concrete and theoretical prediction. Textile Research Journal 90 (17–18):1931–47. doi:10.1177/0040517520903416.
  • Jin, L., Z. M. Wang, R. B. Zhang, and X. L. Du. 2021. Mesoscopic simulation on flexural behavior of single-way reinforced concrete slab with rebars subjected to localized corrosion. Structures 31(17-18:815–27. doi:10.1016/j.istruc.2021.02.033.
  • Jing, L., S. P. Yin, and F. Aslani. 2021. Experimental investigation on compressive performance of masonry columns confined with textile-reinforced concrete. Construction and Building Materials 269:121270. doi:10.1016/j.conbuildmat.2020.121270.
  • Khan, K., and M. L. Cao. 2021. “Effect of hybrid basalt fibre length and content on properties of cementitious composites”. Magazine of Concrete Research 73( 10): 487–98. doi: 10.1680/jmacr.19.00226.
  • Khan, K., M. L. Cao, H. M. Ai, and A. Hussain. 2022. Basalt fibers in modified whisker reinforced cementitious composites. Periodica Polytechnica-Civil Engineering Advance online publication. doi:10.3311/PPci.18965.
  • Khandelwal, S., and K. Y. Rhee. 2020. Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Composites Part B: Engineering 192:108011. doi:10.1016/j.compositesb.2020.108011.
  • Larrinaga, P., C. Chastre, H. C. Biscaia, and J. T. San-Jose. 2014. Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress. Materials & Design 55:66–74. doi:10.1016/j.matdes.2013.09.050.
  • Li, D. S., H. Cao, and J. P. Ou. 2012. Fracture behavior and damage evaluation of polyvinyl alcohol fiber concrete using acoustic emission technique. Materials & Design 40:205–11. doi:10.1016/j.matdes.2012.03.051.
  • Li, S. C., S. P. Yin, L. C. Wang, and X. Q. Hu. 2021. Mechanical properties of eccentrically compressed columns strengthened with textile-reinforced concrete under the coupled action of chloride salt corrosion and loading. Applied Ocean Research 116:102884. doi:10.1016/j.apor.2021.102884.
  • Liu, S., P. Rawat, X. Wang, and D. J. Zhu. 2019. Low velocity impact behavior of AR-glass textile reinforced mortar under varying range of loading and temperatures. Construction and Building Materials 228:116773. doi:10.1016/j.conbuildmat.2019.116773.
  • Liu, S., X. Wang, P. Rawat, Z. Chen, C. J. Shi, and D. J. Zhu. 2021. Experimental study and analytical modeling on tensile performance of basalt textile reinforced concrete. Construction and Building Materials 267:120972. doi:10.1016/j.conbuildmat.2020.120972.
  • Lu, L. M., F. Han, S. H. Wu, Y. W. Qin, G. L. Yuan, and J. H. Doh. 2021. Experimental study on durability of basalt fiber concrete after elevated temperature. Structural Concrete Advance online publication. doi:10.1002/suco.202000746.
  • Lyu, Z. H., A. Q. Shen, and W. N. Meng. 2021. Properties, mechanism, and optimization of superabsorbent polymers and basalt fibers modified cementitious composite. Construction and Building Materials 276:122212. doi:10.1016/j.conbuildmat.2020.122212.
  • Mohan, A., and T. C. Madhavi. 2021. Development of binders for textile reinforced concrete. Materials Today: Proceedings 46 (9):3297–301. doi:10.1016/j.matpr.2020.11.462.
  • Nguyen, K. T. Q., S. Navaratnam, P. Mendis, K. Zhang, J. Barnett, and H. Wang. 2020. Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete. Composites Part B-Engineering 187:107815. doi:10.1016/j.compositesb.2020.107815.
  • Nor, N. M., S. Abdullah, and S. N. M. Saliah. 2021. On the need to determine the acoustic emission trend for reinforced concrete beam fatigue damage. International Journal of Fatigue 152:106421. doi:10.1016/j.ijfatigue.2021.106421.
  • Papanicolaou, C. G., T. C. Triantafillou, and D. A. Bournas. 2006. “TRM as strengthening and science retrofitting material of concrete structures”. Paper presented at the annual meeting for the1st International Conference Textile Reinforced Concrete (ICTRC). 50: 331–40.
  • Qin, J. H., J. S. Qian, Z. Li, C. You, X. B. Dai, Y. F. Yue, and Y. R. Fan. 2018. Mechanical properties of basalt fiber reinforced magnesium phosphate cement composites. Construction and Building Materials 188:946–55. doi:10.1016/j.conbuildmat.2018.08.044.
  • Qin, Y., X. W. Zhang, J. R. Chai, Z. G. Xu, and S. Y. Li. 2019. Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. Construction and Building Materials 194:216–25. doi:10.1016/j.conbuildmat.2018.11.042.
  • Rajendran, M., and C. K. Nagarajan. 2021. Experimental investigation on bio-composite using jute and banana fiber as a potential substitute of solid wood based materials. Journal of Natural Fibers Advance online publication, 1–10. doi:10.1080/15440478.2020.1867943.
  • Rambo, D. A. S., Y. M. Yao, F. D. A. Silva, R. D. T. Filho, and B. Mobasher. 2017. Experimental investigation and modelling of the temperature effects on the tensile behavior of textile reinforced refractory concretes. Cement & Concrete Composites 75:51–61. doi:10.1016/j.cemconcomp.2016.11.003.
  • Saliah, S. N. M., N. M. Nor, N. A. Rahman, S. Abdullah, and M. S. Tahir. 2021. Evaluation of severely damaged reinforced concrete beam repaired with epoxy injection using acoustic emission technique. Theoretical and Applied Fracture Mechanics 112:102890. doi:10.1016/j.tafmec.2020.102890.
  • Schladitz, F., M. Frenzel, D. Ehlig, and M. Curbach. 2012. Bending load capacity of reinforced concrete slabs strengthened with textile reinforced concrete. Engineering Structures 40:317–26. doi:10.1016/j.engstruct.2012.02.029.
  • Sheetal, S., and K. Bilavari. 2020. RBF-Slip behaviour of reinforced concrete elements subjected to corrosion of rebar. Case Studies in Construction Materials 13:e00420. doi:10.1016/j.cscm.2020.e00420.
  • Soulioti, D., N. M. Barkoula, A. Paipetis, T. E. Matikas, T. Shiotani, and D. G. Aggelis. 2009. Acoustic emission behavior of steel fibre reinforced concrete under bending. Construction and Building Materials 23 (12):3532–36. doi:10.1016/j.conbuildmat.2009.06.042.
  • Su, D. Y., J. Y. Pang, and X. W. Huang. 2021. Mechanical and dynamic properties of hybrid fiber reinforced fly-ash concrete. Advances in Civil Engineering 3145936. doi:10.1155/2021/3145936.
  • Tran, M. T., X. H. Vu, and E. Ferrier. 2020. Mesoscale numerical modeling and characterization of the effect of reinforcement textile on the elevated temperature and tensile behaviour of carbon textile-reinforced concrete composite. Fire Safety Journal 116:103186. doi:10.1016/j.firesaf.2020.103186.
  • Tsangouri, E., and D. G. Aggelis. 2019. A review of acoustic emission as indicator of reinforcement effectiveness in concrete and cementitious composites. Construction and Building Materials 224:198–205. doi:10.1016/j.conbuildmat.2019.07.042.
  • Wan, C. L., J. Y. Wang, Q. Zeng, L. H. Shen, D. M. Yan, and Y. Peng. 2021. Mechanical behavior of masonry columns strengthened with basalt textile reinforced concrete under eccentric loading: Experimental investigation and analytical modelling. Construction and Building Materials 269:121816. doi:10.1016/j.conbuildmat.2020.121816.
  • Wang, W. S., Y. C. Cheng, and G. J. Tan. 2018. Design optimization of SBS-modified asphalt mixture reinforced with eco-friendly basalt fiber based on response surface methodology. Materials 11 (8):1311. doi:10.3390/ma11081311.
  • Wang, Y., T. T. Zhang, L. Zhou, C. Yan, N. Wang, J. Gu, and L. J. Chen. 2019. Damage characteristics of basalt fiber reinforced mortar under compression evaluated by acoustic emission. Materials Testing 61 (4):381–88. doi:10.3139/120.111332.
  • Xargay, H., M. Ripani, P. Folino, N. Núñez, and A. Caggiano. 2021. Acoustic emission and damage evolution in steel fiber-reinforced concrete beams under cyclic loading. Construction and Building Materials 274:121831. doi:10.1016/j.conbuildmat.2020.121831.
  • Yang, L. Y., H. Z. Xie, D. B. Zhang, F. Zhang, C. Y. Lin, and S. Z. Fang. 2021. Acoustic emission characteristics and crack resistance of basalt fiber reinforced concrete under tensile load. Construction and Building Materials 312:125442. doi:10.1016/j.conbuildmat.2021.125442.
  • Yu, Q. H., P. Valeri, M. F. Ruiz, and A. Muttoni. 2021. A consistent safety format and design approach for brittle systems and application to textile reinforced concrete structures. Engineering Structures 249:113306. doi:10.1016/j.engstruct.2021.113306.
  • Zhang, X. F., X. Wang, Z. Q. Peng, Z. G. Zhu, and Z. S. Wu. 2021. Parametric study on mechanical properties of basalt leno textile applied as concrete reinforcement. Advances in Structural Engineering 25 (1):48–62. doi:10.1177/13694332211042787.
  • Zhang, G. Y., Y. F. Zhu, X. M. Lin, Y. Tian, H. L. Ye, X. Y. Jin, N. G. Jin, D. Yan, F. Xiao, K. Yao, et al. 2021. Numerical simulation of electrochemical mechanism of steel rebar corrosion in concrete under natural climate with time-varying temperature and humidity. Construction and Building Materials 306:124873. doi:10.1016/j.conbuildmat.2021.124873.
  • Zhou, O., B. Jia, H. Huang, and Y., L. Mou. 2020. Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials 13 (6):1362. doi:10.3390/ma13061362.
  • Zhu, D. J., A. Peled, and B. Mobasher. 2011. Dynamic tensile testing of fabric–cement composites. Construction and Building Materials 25 (1):385–95. doi:10.1016/j.conbuildmat.2010.06.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.