60
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Keratin Modified and Functionalized as a Reinforcement and Nucleation Agent of β-Polypropylene Composites

ORCID Icon, , &
Pages 15448-15458 | Published online: 07 Oct 2022

References

  • Anastacio-López, Z. S., J. A. Gonzalez-Calderon, R. Saldivar-Guerrero, C. Velasco-Santos, A. L. Martínez-Hernández, J. C. Fierro-González, and A. Almendárez-Camarillo. 2019. Modification of graphene oxide to induce beta crystals in isotactic polypropylene. Journal of Materials Science 54 (1):427–43. doi:10.1007/s10853-018-2866-3.
  • Broda, J., M. Baczek, J. Fabia, D. Binias, and R. Fryczkowski. 2020. NucleatIng agents based on graphene and graphene oxide for crystallization of the β-form of isotactic polypropylene. Journal of Materials Science 55 (4):1436–50. doi:10.1007/s10853-019-04045-y.
  • Chunyan, C., Z. Zishou, D. Qian, D. Xin, and M. Kancheng. 2015. From α- to β-crystallization in multi-walled carbon nanotubes-filled polypropylene nanocomposites. Journal of Thermal Analysis and Calorimetry 119 (3):1781–91. doi:10.1007/s10973-014-4304-3.
  • Flores-Hernández, C. G., A. Colin-Cruz, C. Velasco-Santos, V. M. Castaño, A. Almendarez-Camarillo, I. Olivas-Armendariz, and A. L. Martínez-Hernández. 2018. Chitosan–starch–keratin composites: Improving thermo-mechanical and degradation properties through chemical modification. Journal of Polymers and the Environment 26 (5):2182–91. doi:10.1007/s10924-017-1115-1.
  • Flores-Hernández, C., A. Colín-Cruz, C. Velasco-Santos, V. Castaño, J. Rivera-Armenta, A. Almendarez-Camarillo, P. García-Casillas, and A. Martínez-Hernández. 2014. AlL green composites from fully renewable biopolymers: Chitosan-starch reinforced with keratin from feathers. Polymers 6 (3):686–705. doi:10.3390/polym6030686.
  • Gonzalez-Calderon, J. A., E. O. Castrejon-Gonzalez, F. J. Medellin-Rodriguez, N. Stribeck, and A. Almendarez-Camarillo. 2015. Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: Effect of linkage on β-crystal formation in an Isotactic Polypropylene (IPP) matrix. Journal of Materials Science 50 (3):1457–68. doi:10.1007/s10853-014-8706-1.
  • Gonzalez-Calderon, J. A., J. Vallejo-Montesinos, J. M. Mata-Padilla, E. Pérez, and A. Almendarez-Camarillo. 2015. EffectIve method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. Journal of Materials Science 50 (24):7998–8006. doi:10.1007/s10853-015-9365-6.
  • Gregorova, A., M. Hrabalova, R. Wimmer, B. Saake, and C. Altaner. 2009. Poly(lactide Acid) composites reinforced with fibers obtained from different tissue types of Picea Sitchensis. Journal of Applied Polymer Science 114 (5):2616–23. doi:10.1002/app.30819.
  • He, Z., Y.-F. Zhang, and Y. Li. 2020. Dependence of β-crystal formation of isotactic polypropylene on crystallization conditions. Journal of Polymer Research 27 (9):250. doi:10.1007/s10965-020-02241-y.
  • Huda, S., and Y. Yang. 2008. Composites from ground chicken quill and polypropylene. Composites Science and Technology 68 (3–4):790–98. doi:10.1016/j.compscitech.2007.08.015.
  • Jagadeesh, P., Y. G. Thyavihalli Girijappa, M. Puttegowda, S. M. Rangappa, and S. Siengchin. 2020. Effect Of natural filler materials on fiber reinforced hybrid polymer composites: An overview. Journal of Natural Fibers, December: 1–16. doi:10.1080/15440478.2020.1854145.
  • Labour, T., C. Gauthier, R. Séguéla, G. Vigier, Y. Bomal, and G. Orange. 2001. Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO 3 -filled polypropylene. I. structural and mechanical characterisation. Polymer 42 (16):7127–35. doi:10.1016/S0032-3861(01)00089-1.
  • Madhu, P., M. R. Sanjay, M. Jawaid, S. Siengchin, A. Khan, and C. Iulian Pruncu. 2020. A new study on effect of various chemical treatments on agave americana fiber for composite reinforcement: Physico-chemical, thermal, mechanical and morphological properties. Polymer Testing 85 (May):106437. doi:10.1016/j.polymertesting.2020.106437.
  • Martínez-Hernández, A. L., C. Velasco-Santos, M. de-Icaza, and V. M. Castaño. 2007. Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Composites Part B: Engineering 38 (3):405–10. doi:10.1016/j.compositesb.2006.06.013.
  • Niu, H., N. Wang, and Y. Li. 2018. Influence of β-nucleating agent dispersion on the crystallization behavior of isotactic polypropylene. Polymer 150 (August):371–79. doi:10.1016/j.polymer.2018.07.030.
  • Oladele, I. O., O. O. Daramola, A. M. Okoro, and J. A. Omotoyinbo. 2018. Evaluation of The effect of mercerized white chicken feather fibres on the mechanical. Journal of Engineering and Engineering Technology 12 (1):139–46.
  • Özmen, U., and B. O. Baba. 2017. Thermal characterization of chicken feather/PLA biocomposites. Journal of Thermal Analysis and Calorimetry 129 (1):347–55. doi:10.1007/s10973-017-6188-5.
  • Prabhu, L., V. Krishnaraj, S. Sathish, S. Gokulkumar, M. R. Sanjay, and S. Siengchin. 2020. Mechanical and acoustic properties of alkali-treated sansevieria ehrenbergii/camellia sinensis fiber–reinforced hybrid epoxy composites: Incorporation of glass fiber hybridization. Applied Composite Materials 27 (6):915–33. doi:10.1007/s10443-020-09840-4.
  • Rajeshkumar, G., V. Hariharan, S. Indran, M. R. Sanjay, S. Siengchin, J. Prakash Maran, N. Abdullah Al-Dhabi, and P. Karuppiah. 2021. Influence of sodium hydroxide (NaOH) treatment on mechanical properties and morphological behaviour of Phoenix Sp. fiber/epoxy composites. Journal of Polymers and the Environment 29 (3):765–74. doi:10.1007/s10924-020-01921-6.
  • Ramesh, M., C. Deepa, L. Rajesh Kumar, M.R. Sanjay, and S. Siengchin. 2020. Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: A critical review. Journal of Industrial Textiles 51 (4_suppl):5518S–42S. doi:10.1177/1528083720924730.
  • Reddy, N., and Y. Yang. 2007. Structure and properties of chicken feather barbs as natural protein fibers. Journal of Polymers and the Environment 15 (2):81–87. doi:10.1007/s10924-007-0054-7.
  • Saba, N., M. Jawaid, O. Y. Alothman, and M. T. Paridah. 2016. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials 106 (March):149–59. doi:10.1016/j.conbuildmat.2015.12.075.
  • Sanadi, A. R., and A. R. Sanadi. 2000. Transcrystalline interphases in natural fiber-PP composites: Effect of coupling agent. Composite Interfaces 7 (1):31–43. doi:10.1163/156855400300183560.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172 (January):566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Sanjay, M. R., S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan. 2019. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing, and characterization. Carbohydrate Polymers 207 (March):108–21. doi:10.1016/j.carbpol.2018.11.083.
  • Shanmugasundaram, N., I. Rajendran, and T. Ramkumar. 2018. Static, Dynamic Mechanical and Thermal Properties of Untreated and Alkali Treated Mulberry Fiber Reinforced Polyester Composites. Polymer Composites 39 (S3):E1908–19. doi:10.1002/pc.24890.
  • Sharma, S., A. Gupta, S. M. S. T. Chik, C. Y. K. Gek, P. K. Podder, J. Thraisingam, and M. Subramaniam. 2016. Extraction and characterization of keratin from chicken feather waste biomass: A study. The National Conference for Postgraduate Research, 693–99. Malaysia.
  • Sumrith, N., L. Techawinyutham, M. R. Sanjay, R. Dangtungee, and S. Siengchin. 2020. Characterization of alkaline and silane treated fibers of ‘water hyacinth plants’ and reinforcement of ‘water hyacinth fibers’ with bioepoxy to develop fully biobased sustainable eco-friendly composites. Journal of Polymers and the Environment 28 (10):2749–60. doi:10.1007/s10924-020-01810-y.
  • Thwe, M. M., and K. Liao. 2003. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Composites Science and Technology 63 (3–4):375–87. doi:10.1016/S0266-3538(02)00225-7.
  • Thyavihalli Girijappa, Y. G., S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin. 2019. NatURAL FIBERS AS SUSTAINABLE AND RENEWABLE RESOURCE FOR DEVELOPMENT OF ECO-FRIENDLY COMposites: A comprehensive review. Frontiers in Materials. 6 (September). doi:10.3389/fmats.2019.00226.
  • Tjong, S. C., J. S. Shen, and R. K. Y. Li. 1996. Mechanical behavior of injection molded β-crystalline phase polypropylene. Polymer Engineering & Science 36 (1):100–05. doi:10.1002/pen.10390.
  • Varga, J. 2002. β-modification of isotactic polypropylene: PreParation, structure, processing, properties, and application. Journal of Macromolecular Science, Part B 41 (4–6):1121–71. doi:10.1081/MB-120013089.
  • Vinod, A., M. R. Sanjay, S. Suchart, and P. Jyotishkumar. 2020. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers, and biocomposites. Journal of Cleaner Production 258 (June):120978. doi:10.1016/j.jclepro.2020.120978.
  • Yu, K., H. Jiang, H. Zhou, J. Mi, Y. He, and X. Wang. 2018. Evolution of double crystal melting peak in polypropylene foam assisted by β-nucleating agent and supercritical CO2. Journal of Applied Polymer Science 135 (12):46007. doi:10.1002/app.46007.
  • Zhang, Z., C. Wang, Z. Junping, and K. Mai. 2012. β-nucleation of pimelic acid supported on metal oxides in isotactic polypropylene. Polymer International 61 (5):818–24. doi:10.1002/pi.4148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.