97
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Mechanical Properties of Natural Cellulosic Yucca treculeana L. Fiber for Biocomposites Applications: Statistical Analysis

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 15501-15518 | Published online: 07 Oct 2022

References

  • Amroune, S., A. Belaadi, M. Bourchak, A. Makhlouf, and H. Satha. 2020. Statistical and experimental analysis of the mechanical properties of flax fibers. Journal of Natural Fibers 19: 1387–401.doi: 10.1080/15440478.2020.1775751
  • Amroune, S., A. Bezazi, A. Belaadi, C. Zhu, F. Scarpa, S. Rahatekar, and A. Imad. 2015. Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Composites Part A: Applied Science and Manufacturing 71:95–106. doi:10.1016/j.compositesa.2014.12.011.
  • Amroune, S., A. Bezazi, A. Dufresne, F. Scarpa, and A. Imad. 2019. Investigation of the date palm fiber for green composites reinforcement: thermo-physical and mechanical properties of the fiber. Journal of Natural Fibers 0478:1–18. doi:10.1080/15440478.2019.1645791.
  • Andersons, J., E. Spārniņš, R. Joffe, and L. Wallström. 2005. Strength distribution of elementary flax fibres. Composites Science and Technology 65 (3):693–702. doi:10.1016/j.compscitech.2004.10.001.
  • Andersons, J., E. Spārniņš, and E. Poriķe. 2009. Strength and damage of elementary flax fibers extracted from tow and long line flax. Journal of Composite Materials 43 (22):2653–64. doi:10.1177/0021998309345035.
  • Asloun, M., J. B. D. El, G. Guilpain, M. Nardin, and J. Schultz. 1989. On the estimation of the tensile strength of carbon fibres at short lengths. Journal of Materials Science 24 (10):3504–10. doi:10.1007/BF02385732.
  • Azanaw, A., A. Haile, and R. K. Gideon. 2019. Extraction and characterization of fibers from yucca elephantine plant. Cellulose 26 (2):795–804. doi:10.1007/s10570-018-2103-x.
  • Belaadi, A., S. Amroune, Y. Seki, O. Y. Keskin, S. Köktaş, M. Bourchak, A. Dufresne, H. Fouad, and M. Jawaid. 2022. Extraction and characterization of a new lignocellulosic fiber from Yucca treculeana L. leaf as potential reinforcement for industrial biocomposites. Journal of Natural Fibers 1–16. doi:10.1080/15440478.2022.2054895.
  • Belaadi, A., A. Bezazi, M. Bourchak, and F. Scarpa. 2013. Tensile static and fatigue behaviour of sisal fibres. Materials & Design 46:76–83. doi:10.1016/j.matdes.2012.09.048.
  • Belaadi, A., M. Bourchak, and H. Aouici. 2016. Mechanical properties of vegetal yarn: statistical approach. Composites Part B: Engineering 106:139–53. doi:10.1016/j.compositesb.2016.09.033.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Benzannache, N., A. Belaadi, M. Boumaaza, and M. Bourchak. 2021. Improving the mechanical performance of biocomposite plaster/washingtonian filifira fibres using the rsm method. Journal of Building Engineering 33:101840. doi:10.1016/j.jobe.2020.101840.
  • Bezazi, A., A. Belaadi, M. Bourchak, F. Scarpa, and K. Boba. 2014. Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibres. Composites Part B: Engineering 66:194–203. doi:10.1016/j.compositesb.2014.05.014.
  • Blanchard, J. M. F. A., A. J. Sobey, and J. I. R. Blake. 2016. Multi-scale investigation into the mechanical behaviour of flax in yarn, cloth and laminate form. Composites Part B: Engineering 84:228–35. doi:10.1016/j.compositesb.2015.08.086.
  • Caiza, T., P. Dario, and T. Ummenhofer. 2018. Consideration of the runouts and their subsequent retests into s-n curves modelling based on a three-parameter Weibull distribution. International Journal of Fatigue 106:70–80. doi:10.1016/j.ijfatigue.2017.09.010.
  • David-West, O. S., W. M. Banks, and R. A. Pethrick. 2011. A study of the effect of strain rate and temperature on the characteristics of quasi-unidirectional natural fibre-reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 225 (3):133–48. doi:10.1177/0954420711404635.
  • Dembri, I., A. Belaadi, M. Boumaaza, and M. Bourchak. 2022. “Tensile Behavior and Statistical Analysis of Washingtonia Filifera Fibers as Potential Reinforcement for Industrial Polymer Biocomposites.” Journal of Natural Fibers, May, 1–16. 10.1080/15440478.2022.2069189.
  • Ducros, F., and P. Pamphile. 2018. Bayesian estimation of Weibull mixture in heavily censored data setting. Reliability Engineering and System Safety 180:453–62. doi:10.1016/j.ress.2018.08.008.
  • Ighalo, J. O., C. A. Igwegbe, A. G. Adeniyi, and S. A. Abdulkareem. 2021. Artificial neural network modeling of the water absorption behavior of plantain peel and bamboo fibers reinforced polystyrene composites. Journal of Macromolecular Science, Part B 60 (7):472–84. doi:10.1080/00222348.2020.1866282.
  • Jayaramudu, J., B. R. Guduri, and A. Varada Rajulu. 2010. Characterization of new natural cellulosic fabric grewia tilifolia. Carbohydrate Polymers 79 (4):847–51. doi:10.1016/j.carbpol.2009.10.046.
  • Jayaramudu, J., A. Maity, E. R. Sadiku, B. R. Guduri, A. Varada Rajulu, C. V. V. Ramana, and R. Li. 2011. Structure and properties of new natural cellulose fabrics from cordia dichotoma. Carbohydrate Polymers 86 (4):1623–29. doi:10.1016/j.carbpol.2011.06.071.
  • Jihan, S., A. M. Siddiquib, and M. A. S. Sweet. 1997. Fracture strength of e-glass fibre strands using acoustic emission. NDT and E International 30 (6):383–88. doi:10.1016/S0963-8695(97)00009-1.
  • Kompella, M. K., and J. Lambros. 2002. Micromechanical characterization of cellulose fibers. Polymer Testing 21 (5):523–30. doi:10.1016/S0142-9418(01)00119-2.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers 171:163–72. doi:10.1016/j.carbpol.2017.04.096.
  • Maheswari, C. U., B. R. Guduri, and A. V. Rajulu. 2008. Properties of lignocellulose tamarind fruit fibers. Journal of Applied Polymer Science 110 (4):1986–89. doi:10.1002/app.27915.
  • Massey, F. J., Jr. 1951. The kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association 46 (253):68–78. doi:10.1080/01621459.1951.10500769.
  • Moghaddam, M. K., and E. Karimi. 2020. Structural and physical characteristics of the yucca fiber. Journal of Industrial Textiles. doi:10.1177/1528083720960756.
  • Mukherjee, P. S., and K. G. Satyanarayana. 1984. Structure and properties of some vegetable fibres. part 1: sisal fibre. Journal of Materials Science 19:3925–34. doi:10.1007/BF01144699.
  • Porras, A., A. Maranon, and I. A. Ashcroft. 2015. Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Composites Part B: Engineering 74:66–73. doi:10.1016/j.compositesb.2014.12.033.
  • Rajisha, K. R., B. Deepa, L. A. Pothan, and S. Thomas. 2011. Thermomechanical and Spectroscopic Characterization of Natural Fibre Composites. Interface Engineering of Natural Fibre Composites for Maximum Performance. doi:10.1016/B978-1-84569-742-6.50009-5.
  • Ramasamy, R., K. O. Reddy, and A. V. Rajulu. 2018. Extraction and characterization of Calotropis gigantea bast fibers as novel reinforcement for composites materials. Journal of Natural Fibers 15 (4):527–38. doi:10.1080/15440478.2017.1349019.
  • Reddy, K. O., B. Ashok, K. R. N. Reddy, Y. E. Feng, J. Zhang, and A. V. Rajulu. 2014. Extraction and characterization of novel lignocellulosic fibers from thespesia lampas plant. International Journal of Polymer Analysis and Characterization 19 (1):48–61. doi:10.1080/1023666X.2014.854520.
  • Reddy, K. O., C. U. Maheswari, M. Shukla, and A. V. Rajulu. 2012. Chemical composition and structural characterization of Napier grass fibers. Materials Letters 67 (1):35–38. doi:10.1016/j.matlet.2011.09.027.
  • Reddy, K. O., K. R. N. Reddy, J. Zhang, J. Zhang, and A. V. Rajulu. 2013. Effect of alkali treatment on the properties of century fiber. Journal of Natural Fibers 10 (3):282–96. doi:10.1080/15440478.2013.800812.
  • Silva, F. A., N. Chawla, and R. D. T. Filho. 2008. Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology 68 (15–16):3438–43. doi:10.1016/j.compscitech.2008.10.001.
  • Taban, E., R. Mirzaei, M. Faridan, E. Samaei, F. Salimi, A. Tajpoor, and M. Ghalenoei. 2020. Morphological, acoustical, mechanical and thermal properties of sustainable green yucca (Y. gloriosa) fibers : an exploratory investigation. Journal of Environmental Health Science and Engineering 18:883–96. doi:10.1007/s40201-020-00513-9.
  • Virk, A. S., W. Hall, and J. Summerscales. 2009a. Multiple data set (mds) weak-link scaling analysis of jute fibres. Composites Part A: Applied Science and Manufacturing 40 (11):1764–71. doi:10.1016/j.compositesa.2009.08.022.
  • Weibull, W. 1951. A statistical distribution function of wide applicability. Journal of Applied Mechanics 18:293–97.
  • Zafeiropoulos, N. E., and C. A. Baillie. 2007. A study of the effect of surface treatments on the tensile strength of flax fibres: part ii. application of Weibull statistics. Composites Part A: Applied Science and Manufacturing 38 (2):629–38. doi:10.1016/j.compositesa.2006.02.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.